Location for 802.22 WRAN radio systems

Presented to the
IEEE 802.22
by Ivan Reede

Location methods

- There are two basic data acquisition methods
- Direction Finding
- Ranging
- Both can be used together to determine a location from another location
- Both can be used without the other to determine a location from a group of other locations

Direction Finding

- Conventionally performed by CW systems
- CW time difference of arrival at the sensors
- Results obtained from difference in time of arrival
- Time difference (phase) is converted to bearing
- Requires known stable wave front

Ranging

- Difficult for low bandwidth (low speed) (MAC)
- Well suited for higher bandwidth (fast) (PHY)
- Requires simple logic addition (detector/counter)

Ranging Based Location Methods

- Time Sum Of Arrival (TSOA)
- Time Difference Of Arrival (TDOA)
- Absolute Range

Location Method Requirements

- TDOA and/or Direction Finding
- Requires minimal if any ranging abilities in CPEs
- Requires at least two BS PHYs in cooperation to work
- TDOA PHY array takes all readings at once - fastest result

Location Method Requirements

- TSOA
- Requires more ranging abilities in CPEs and full ranging abilites in BSs
- Requires at least two BSs in cooperation to work
- Ill suited for currently single BS deployments

Location Method Requirements

- Absolute
- Requires more ranging abilities in CPEs
- Requires full ranging abilites in BSs
- Requires only one BS to get some resolution
- Works well with multiple BSs

Absolute Ranging Location

- One range places source on the surface of a sphere

Absolute Ranging Location

- One range places source on the surface of a sphere
- Two intersecting spheres may place source on an annular ring

Absolute Ranging Location

- One range places source on the surface of a sphere
- Two intersecting spheres may place source on an annular ring
- Two intersecting annular rings may place source on two points

Absolute Ranging Location

- One range places source on the surface of a sphere
- Two intersecting spheres may place source on an annular ring
- Two intersecting annular rings may place source on two points
- Fourth range places source on a single point

Absolute Ranging Location

- If we assume $\mathrm{z}=0$ (forget altitude information)

Absolute Ranging Location

- If we assume $\mathrm{z}=0$ (forget altitude information)
- One range places source on the surface of a ring

Absolute Ranging Location

- If we assume $\mathrm{z}=0$ (forget altitude information)
- One range places source on an annular ring
- Two intersecting rings may place source on any of two points

Absolute Ranging Location

- If we assume $\mathrm{z}=0$ (forget altitude information)
- One range places source on the surface of a circle
- Two intersecting circles may place source on any of 2 points
- Third reading may place source on a single point

TSOA - I

- TSOA is based on readings from two observers, A and B at known locations. If the the sum of the time of arrival at A and B is known, D 's position is constrained to be on the surface of an elipsoid of revolution.

TSOA - II

- Two ranges places source on an ellipsoid of revolution
- Two intersecting ellipsiods of revolution may place source on an annular ring
- Two intersecting annular rings may place source on two points
- Another range may place source on one point
- Some ranges may be replaced by geometrical factors (such as assuming $\mathrm{z}=0$)

TDOA - I

- TDOA is based on readings from two observers, A and B at known locations. If the difference in the time of arrival at A and B is known, D's position is constrained to a hyperboloid of revolution.

TDOA - II

- Two ranges places source on an hyperboloid of revolution
- Two intersecting hyperboloids of revolution may place source on an annular ring
- Another reading places source on two points
- Another reading places source on one point
- Some ranges may be replaced by geometrical factors (such as assuming $\mathrm{z}=0$)

TDOA Location - III

- Graphically, the solution looks like:

Building a BS sensor array on the fly

- Let's look at what's needed for a heterogenic BS sensor array to self-construct in a plug \& play map
- To achieve this, we need to entertain the concept of CPE time referential
- Space has many dimensions
- X,Y,Z,Time,...

CPE Location and Ranging

CPE Location - I

- Assume the BS PHYs are at known locations
- CPEs have minimal location abilities

CPE Location - I

- BS Transmits Ranging Query
- BS PHY records first high resolution time stamp

BS	Ta
time line	1
CPE	
time line	

CPE Location - II

- CPE Receives Ranging Query
- CPE PHY records first high resolution time stamp

CPE Location - III

- CPE Responds to Query with value Txr
- CPE PHY records second high resolution time stamp

CPE Location - IV

- BS Receives response to Query
- BS PHY records second high resolution time stamp
- CPE transmits its time stamps to BS

RFD Location - V

- In range BSs can report RFD TDOA data
- Out of range BSs can report RFD TSOA data
- CPE's don't need to keep track of absolute time

$$
\mathrm{T} f \mathrm{AX}=\left(\mathrm{T} a^{\prime}-\mathrm{T} a-\mathrm{T} x r\right) / 2
$$

Proposal Conclusion

- It may be very useful to include protocol
- To allow for time independent readings
- To allow for TDOA and TSOA readings
- To allow for simplified, rangeless CPEs
- It may be useful to mandate a ranging packet data pattern that forces a sharp leading edge pulse (6 Mhz BW) out of the FFT engine
- This would make CPE ranging easier and more precise (interpolating down to 5 meter resolution)

3 Sensor TDOA Math I

Assumptions

- Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the position on the X and Y and Z axis of a flat cartesian space
- Position of sensors
- Sensorl, $\mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=0$ (at the coordinate system origin)
- Sensor2, $x_{2}=x_{2}, y_{2}=0, z_{2}=0$ (somwhere on the x axis)
- Sensor3, $x_{3}=x 3, y_{3}=y 3, z_{3}=0$ (somewhere on the $x-y$ plane)
- Position of source $\mathrm{x}_{0}=\mathrm{X}_{\mathrm{s}}, \mathrm{y}_{0}=\mathrm{y}_{\mathrm{s}}, \mathrm{z}_{0}=\mathrm{z}_{\mathrm{s}}$
- Distances can be computed from propagation delay

3 Sensor TDOA Math II

- Let the propagation delay of a signal from the source to a sensor be
- $\mathrm{D}_{1}=$ delay from source to Sensor1
- $\mathrm{D}_{2}=$ delay from source to Sensor2
- $\mathrm{D}_{3}=$ delay from source to Sensor3
- Let the TDOA from one sensor to another be
- $\mathrm{D}_{12}=\mathrm{D}_{1}-\mathrm{D}_{2}$ (TDOA between Sensor1 and Sensor2)
- $\mathrm{D}_{13}=\mathrm{D}_{1}-\mathrm{D}_{3}$ (TDOA between Sensor1 and Sensor3)
- Let the corresponding distances be
- $\mathrm{R}_{12}=\mathrm{R}_{1}-\mathrm{R}_{2}$
- $\mathrm{R}_{13}=\mathrm{R}_{1}-\mathrm{R}_{3}$

3 Sensor TDOA Math III

Starting Premise
Assuming the source is located at x, y, z, nصnmetry the

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}+z^{2}}-\sqrt{\left(x-x_{2}\right)^{2}+y^{2}+z^{2}}:=R_{12} \\
& \sqrt{x^{2}+y^{2}+z^{2}}-\sqrt{\left(x-x_{3}\right)^{2}+\left(y-y_{3}\right)^{2}+z^{2}}:=R_{13}
\end{aligned}
$$

3 Sensor TDOA Math IV

Define an antenna baseline

$$
L_{3}:=\sqrt{x_{3}{ }^{2}+y_{3}{ }^{2}}
$$

3 Sensor TDOA Math V

After simplification

we obtain after simplification:

$$
\begin{aligned}
& \mathrm{R}_{12}{ }^{2}-\mathrm{x}_{2}{ }^{2}+2 \cdot \mathrm{x}_{2} \cdot \mathrm{x}:=2 \cdot \mathrm{R}_{12} \cdot \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \\
& \mathrm{R}_{13}{ }^{2}-\mathrm{L}_{3}{ }^{2}+2 \cdot \mathrm{x}_{3} \cdot \mathrm{x}+2 \cdot \mathrm{y}_{3} \cdot \mathrm{y}:=2 \cdot \mathrm{R}_{13} \cdot \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}
\end{aligned}
$$

These equations represent hyperboloids of revolution with foci at Sensors 1 and 2

3 Sensor TDOA Math VI

Solution
eliminate one degree of freedom by expressing y as a function of x

$$
y(x):=u \cdot x+v
$$

$$
\mathrm{u}:=\frac{\frac{\mathrm{R}_{13}}{\mathrm{R}_{12}} \cdot \mathrm{x}_{2}-\mathrm{x}_{3}}{\mathrm{y}_{3}}
$$

3 Sensor TDOA Math VII

Solution
eliminate a second degree of freedom by expressing z as a function of x

$$
\begin{gathered}
\mathrm{z}(\mathrm{x})^{2}:=\mathrm{d} \cdot \mathrm{x}^{2}+\mathrm{e} \cdot \mathrm{x}+\mathrm{f} \\
\mathrm{~d}:=-\left[1-\left(\frac{\mathrm{x}_{2}}{\mathrm{R}_{12}}\right)^{2}+\mathrm{u}^{2}\right] \quad \mathrm{e}:=\mathrm{x}_{2} \cdot\left[1-\left(\frac{\mathrm{x}_{2}}{\mathrm{R}_{12}}\right)^{2}\right]-2 \cdot \mathrm{u} \cdot \mathrm{v} \\
\mathrm{f}:=\left(\frac{\mathrm{R}_{12}^{2}}{4}\right) \cdot\left[1-\left(\frac{\mathrm{x}_{2}}{\mathrm{R}_{12}}\right)^{2}\right]^{2}-\mathrm{v}^{2}
\end{gathered}
$$

3 Sensor TDOA Math VIII

Solution

eliminate a second degree of freedom by expressing z as a function of x

$$
\mathrm{z}(\mathrm{x})^{2}:=\mathrm{d} \cdot \mathrm{x}^{2}+\mathrm{e} \cdot \mathrm{x}+\mathrm{f}
$$

3 Sensor TDOA Math VIX

Solution
If z is known, with the knowledge of the TDOA polarity, x is determined

$$
\mathrm{z}(\mathrm{x})^{2}:=\mathrm{d} \cdot \mathrm{x}^{2}+\mathrm{e} \cdot \mathrm{x}+\mathrm{f}
$$

For examples, with $\mathrm{z}=0$, we have:

$$
\mathrm{x}_{\text {pos }}:=\frac{-\mathrm{e}+\sqrt{\mathrm{e}^{2}-4 \cdot \mathrm{~d} \cdot \mathrm{f}}}{2 \cdot \mathrm{~d}}
$$

$$
x_{n e g}:=\frac{-e-\sqrt{\mathrm{e}^{2}-4 \cdot d \cdot f}}{2 \cdot \mathrm{~d}}
$$

