NIST Activities in Wireless Coexistence

Communications Technology Laboratory
National Institute of Standards and Technology
Bill Young\(^1\), Jason Coder\(^2\), Dan Kuester, and Yao Ma

\(^1\)william.young@nist.gov, 303-497-3471
\(^2\)jason.coder@nist.gov, 303-497-4670
Wireless technologies sharing spectrum

• Multiple technologies in the same ISM bands
 • 900 MHz, 2.4 GHz, and 5 GHz
 • Standards based: IEEE 802.11, IEEE 802.15.4, etc.
 • Non-standards based: Radio-Frequency Personal Alert Safety Systems (RF PASS)
 • Standards under modification: LTE in the ISM band (LAA-LTE) [1]
 • Emerging applications: Body Area Networks (BANs), Smart Meters, etc.
 • New approaches to spectrum access: 3.5 GHz tiered access [2]
 • The Bring Your Own Device (BYOD) trend

What we mean by coexistence metrology

• Coexistence: “The ability of two or more spectrum-dependent devices or networks to operate without harmful interference.”[3]

• From the C63.27 Working Group on coexistence
 • Functional coexistence: the ability of the target of evaluation (ToE) to successfully perform its intended functions in the presence of other RF devices and other users of spectrum
 • Inhibitive coexistence: the potential of a ToE to inhibit the successful functioning of other users of spectrum

• Coexistence metrology: measurement of the mutual interaction and correlated impacts between multiple, heterogeneous communication systems.

Evaluating spectrum sharing algorithms

• How do we know a spectrum sharing algorithm is efficient?
• Will the algorithm be able to operate in the presence of other technologies?
• There is a growing need to answer such questions.
 • Rigorous testing methods are required
 • Numerical/Analytical testing
 • Radiated verification
Interference/coexistence impacts from complex modulated signals

• LTE interference example
 • LTE signal interfering with cable modems
 • LTE waveforms depend on the source block usage
 • Generate significantly different spectrum and corresponding impacts on the ToE

• Research focus
 • Generalize a waveform that covers the range of conditions

Voice LTE time plan over

20 MHz time plan for LTE
Impact of complex/modulated signals

• Using a direct-injection setup, we evaluated the impact of different signals on the same device, in the same configuration.
 • 20 MHz LTE, 10 MHz LTE both fully allocated
 • 10 MHz VoLTE-like signal
 • 61000-4-3 AM signal
• Device is looking at a single 6 MHz channel with the same center frequency.
• What characteristics of the signal are causing this behavior?
• Can we develop a generic signal for interference testing?
Research Ideas

• KPI – throughput, EVM, latency, jitter, BER, TOC (threshold of communication).
• Coexistence metrics -- POI (probability of interference),
• SIR (signal-to-interference ratio) sensitivity of DUT.
• CGD (cumulative gain distribution) – distribution of combined gain of antennas and channel.
Support ANSI C63.27 standardization effort and T&E
• Design analytical process to derive POI from measurement data
• Uncertainty analysis
Meeting the challenge of coexistence

• Collect information on real-world scenarios
 • Statistics on spectrum usage in the local deployment environment
 • Quality and comparability of data is critical

• Test and validate performance
 • Need relevant performance metrics
 • Inclusion of non-standard protocols via arbitrary RF waveforms

• Initial protocol design
 • Parameters set so that different, uncoordinated protocols minimize impact on each other
 • Required in IEEE wireless protocol development
RF environment of deployment must be understood

- Basic propagation behavior
 - Multipath and attenuation
 - Frequency dependence of building penetration

- Density of wireless devices
 - Number of items in the room, on the body, etc.
 - Network configurations e.g., ultra-dense networks [4]

- Spectrum activity
 - Power levels
 - Duty cycles

Research and develop a calibrated distributed spectrum monitoring system

• Collect RF environment data for coexistence test development

• Localized monitoring granularity
 • In-building, power plant, hospital room, stadium, etc.

• Supports 3.5 GHz tiered licensing research

Spectrum monitoring in a manufacturing facility - within the building and penetration into the building

wireless spectrum sensor
Key considerations in distributed spectrum monitoring system

• Type of data collected
 • Usage statistics based on power, channel occupancy, etc.
• Transceiver performance
 • Calibration, cost, density of distribution
• Relative timing between collection nodes
• Antenna or probe
 • Antenna impacts on measured quantity
 • Field probe versus antenna to obtain more fundamental values
Wireless Forensics: A Critical Component to Successful Spectrum Sharing

• Ability to share spectrum relies on “good neighbors”
• Adherence or enforcement of rules required for confidence in spectrum sharing approaches
• NIST research effort: Develop a set of metrology and analysis tools for wireless forensics
 • Collect spectrum data with a heterogeneous, distributed sensor network
 • Various cost and capability levels
 • Likely need to be self-organizing, dynamic in nature
 • Perform rapid signal deconstruction and localization
Testing a Spectrum Monitoring Network

• Spectrum monitoring system response tests are critical abutting incumbent use: the exclusion zone along coasts
• Need a mobile test platform to emulate radar from different points at sea
• Need to transmit *surrogate* radar test waveforms

UAV Test Platform Research

Capability goals:
• Fast, repeatable positioning in 3 dimensions
• Transmit calibrated, predesigned 3.5 GHz test waveforms
• Fly along coast - over water if needed
• Test spectrum monitoring system response
Implications of MIMO Technology on Coexistence

• Several different flavors to MIMO to consider
 • Simple 2-4 antenna element configurations
 • Relatively easy to support on user equipment
 • Multiple users of a single antenna array
 • Simultaneous transmission to multiple users
 • Large number of elements not necessarily required
 • Referred to as Multi-User MIMO (MU-MIMO)
 • Massive MIMO
 • Large number of antenna elements
 • Multiple propagation paths optimized to a point in a cluttered space, e.g., urban street.
 • No longer a simple point-to-point transmission path
Investigate the implications of MIMO on coexistence metrology

- Density of antenna elements affects the grating lobes, interference, and channel state information
- Multiple beams and users requires a more complex characterization of the interference source than an omni-directional pattern
- Antenna considerations beyond basic gain patterns need to evaluate the systems coexistence performance
MIMO coexistence testing

• Key architecture in recent and emerging communication systems, e.g., IEEE 802.11n, ac.

• MIMO systems utilizes the complex RF propagation environment to improve the robustness of the communication link
 • Diversity transmission and reception
 • Multiple uncorrelated communication channels between transmitter and receiver
 • Interference suppression in MU-MIMO

• Testing and analysis should incorporate the benefits of MIMO technology.
New Laboratory Facilities (opening Q2 2016)

• Large semi-anechoic chamber (~40’x23’x20’) with unique capabilities
 • Can convert into a fully anechoic chamber
 • Can obscure absorber with conductive fabric to create multipath conditions and simulate real-world environments
 • Optimized design enabling quality measurements throughout the volume
• Access to fully operational LTE network via node located in lab
 • Fiber link to LTE network core maintained by PSCR
 • Ability to test non-standard LTE frequencies and network configurations
• Full suite of MIMO capable transmit, receive, and analysis hardware
 • Arbitrary waveform generation, complex signal/protocol analysis
 • Capable of analyzing multiple independent networks (e.g., LTE and Wi-Fi or radar)
• Co-located reverberation chamber
 • Enables characterization in harsh, multi-path environments
 • Can be coupled to semi-anechoic facility
Communications Technology Laboratory

NIST Broadband Interoperability Test Facility: NBIT 1.0

- **eNodeBs**
 - Connected to PSCR LTE Evolved Packet Core

- **Multi-Channel Transceiver**
 - 4-Channels
 - 200 MHz instantaneous bandwidth
 - 100 MHz - 6 GHz
 - RAID System
 - Programmable FPGAs
 - MIMO capable
 - Expandable

- **Channel Emulator**
 - 4-Channels
 - Expandable to 16 channels
 - 160 MHz bandwidth
 - 100 MHz - 6 GHz
 - Custom fading

- **Single-Channel Spectrum Analyzer**
 - 320 MHz bandwidth
 - Up to 20 GHz
 - IEEE 802.11 a/b/g/n/ac
 - Bluetooth
 - FDD/TDD LTE, LTE-A
 - Custom pulse analysis
 - Real-time analysis capability

- **Single-Channel Signal Generator**
 - 160 MHz IQ bandwidth
 - Custom fading
 - Up to 20 GHz
 - IEEE 802.11 a/b/g/n/ac
 - Bluetooth
 - FDD/TDD LTE, LTE-A,
 - Custom pulse generation

- **Reverberation chamber**
 - System under test

- **Configurable Anechoic room**
 - Height =20’

- **NIST Broadband Interoperability Test Facility: NBIT 1.0**
 - eNodeBs Connected to PSCR LTE Evolved Packet Core
 - Multi-Channel Transceiver
 - Channel Emulator
 - Single-Channel Spectrum Analyzer
 - Single-Channel Signal Generator
 - Reverberation chamber

- **System under test**
 - 40’
 - 23’
 - 17’
 - 18’
 - 15’