Feasibility Study of the IEEE 802.19.1 TVWS Coexistence Protocol

Date: 16-07-2012

Authors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislav Filin</td>
<td>NICT</td>
<td>3-4, Hikarino-oka, Yokosuka, Kanagawa, Japan, 239-0847</td>
<td></td>
<td>sfilin@nict.go.jp</td>
</tr>
<tr>
<td>Hiroshi Harada</td>
<td>NICT</td>
<td>3-4, Hikarino-oka, Yokosuka, Kanagawa, Japan, 239-0847</td>
<td></td>
<td>harada@nict.go.jp</td>
</tr>
</tbody>
</table>

Notice: This document has been prepared to assist IEEE 802.19. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Abstract

• This contribution introduces the results of a feasibility study of the IEEE 802.19.1 TVWS coexistence protocol
Outline

- Evaluation system
- Scenario 1
 - Information service
 - 802.11 in TVWS with 5 MHz bandwidth
- Scenario 2
 - Management service
 - 802.11 in TVWS with 5 MHz and 10 MHz bandwidth
Evaluation system

Key components

- CM GUI
- CM
- CDIS
- TV WS DB
- AP + CE
- STA
- CE GUI
Evaluation system

TVWS DB client
Evaluation system
CDIS MIB
Evaluation system

CM GUI
Evaluation system

CE GUI
Evaluation system
802.11 in TVWS AP and STA
Scenario 1

- This scenario evaluates IEEE 802.19.1 coexistence protocol for 802.11 in TVWS with 5 MHz bandwidth WSOs
- Three 802.11 networks are deployed each having one access point and one station
- Each 802.11 network has frequency band of 5 MHz and three available channels
 - 728-734 MHz
 - 734-740 MHz
 - 740-746 MHz
Scenario 1

- All three networks are served by one CM
- All three networks are subscribed to information service
Scenario 1
Scenario 1

1. Access point 1 and station 1 start operation
2. Access point 2 and station 2 start operation
3. Access point 3 and station 3 start operation
4. Access point 1 and station 1 join IEEE 802.19.1 coexistence system
5. Access point 2 and station 2 join IEEE 802.19.1 coexistence system
6. Access point 3 and station 3 join IEEE 802.19.1 coexistence system
Scenario 1

Before joining IEEE 802.19.1 coexistence system
Scenario 1

After joining IEEE 802.19.1 coexistence system
Scenario 2

- This scenario evaluates IEEE 802.19.1 coexistence protocol for 802.11 in TVWS with 5 MHz and 10 MHz bandwidth WSOs
- Three 802.11 5 MHz networks are deployed each having one access point and one station
 - Networks 1, 2, and 3
- Two 802.11 10 MHz networks are deployed each having one access point and one station
 - Networks 4 and 5
Scenario 2

- **Available frequency bands**
 - Network 1 (5 MHz)
 - 728-734 MHz
 - 746-752 MHz
 - Network 2 (5 MHz)
 - 734-740 MHz
 - 746-752 MHz
 - Network 3 (5 MHz)
 - 746-752 MHz
 - Network 4 (10 MHz)
 - 728-734 MHz
 - 734-740 MHz
 - 740-746 MHz
 - Network 5 (10 MHz)
 - 728-734 MHz
 - 734-740 MHz
 - 740-746 MHz
Scenario 2

- Networks 1, 2, and 3 are served by CM 1
- Networks 4 and 5 are served by CM 2
- All networks are subscribed to management service
Scenario 2

1. Access point 1 and station 1 join IEEE 802.19.1 coexistence system and start operation
2. Access point 2 and station 2 join IEEE 802.19.1 coexistence system and start operation
3. Access point 3 and station 3 join IEEE 802.19.1 coexistence system and start operation
4. Access point 4 and station 4 join IEEE 802.19.1 coexistence system and start operation
5. Access point 5 and station 5 join IEEE 802.19.1 coexistence system and start operation
Scenario 2

No CM to CM communication
Scenario 2
CM to CM communication
Conclusions

- This contribution has presented the results of the feasibility study of the IEEE 802.19.1 TVWS coexistence protocol in different scenarios
 - Independently operating WSOs
 - 802.11 in TVWS with 5 MHz bandwidth
 - Dissimilar WSOs
 - 802.11 in TVWS with 5 MHz bandwidth
 - 802.11 in TVWS with 10 MHz bandwidth
Conclusions

• Most of the IEEE 802.19.1 procedures have been implemented and verified including
 – Authentication
 – Subscription
 – Registration
 – Providing coexistence report and coexistence set information
 – Obtaining available channel list
 – Sharing coexistence set information
 – Measurement
 – Reconfiguration
 – Coexistence set element reconfiguration
Conclusions

- Most part of the IEEE 802.19.1 reference model has been implemented and verified including:
 - Key part of the COEX_MEDIA_SAP
 - COEX_TR_SAP
 - Entities are remote
 - TCP/IP has been used
 - CXPM driver
Conclusions

• **Both coexistence services have been tested**
 – Information service
 – Management service

• **Both algorithms have been tested**
 – Discovery algorithm
 – Coexistence decision making algorithm
 • Exclusive channel use
 • Sharing with the same type of network