Bridging Issues in Integration of IEEE 802.16 and Carrier Ethernet

Document Number:
IEEE 802.16-13-0057-00-000r

Date Submitted:
2013-03-18

Source:
Roger B. Marks
EthAirNet Associates*
4040 Montview Blvd
Denver CO 80207 USA
*<http://standards.ieee.org/faqs/affiliationFAQ.html>

Voice: +1 619 393 1913
E-mail: roger@consensii.com

Re:
Call for Contributions IEEE 802.16-13-0032-01-Gdoc.

Base Contribution:
IEEE 802.16-13-0049.

Purpose:
To seek comment from an 802.1 perspective on a proposal to IEEE Project 802.16r.

Notice:
This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Copyright Policy:
The contributor is familiar with the IEEE-SA Copyright Policy <http://standards.ieee.org/IPR/copyrightpolicy.html>.

Patent Policy:
The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

Integration of IEEE 802.16 and Carrier Ethernet

• Contribution IEEE 802.16-13-0049 (“Integration of IEEE 802.16 and Carrier Ethernet”) submitted to IEEE Project 802.16r for March 2013:
 – http://doc.wirelessman.org/16-13-0049

• Proposes operation of IEEE 802.16 (using the IEEE 802.16 Packet Convergence Sublayer) in bridge-centric architecture with an explicit 802.1Q bridging function at the base station;

• Some issues regarding the bridge function require further clarification.
Bridge-Centric Architecture

- Multiple SS Ports per SS
- One SS per SS Port
- One CS instance per SS
- Port-aware CS
- Unidirectional Connections
- Multiple Connections per SS Port
- One SS Port per Connection
- Connections labeled by SS Port
- All Connections linked via PHY

[several examples highlighted]
Notes on Bridge-Centric Architecture

- Bridge functionality at the base station port
- Multiple Ethernet ports per subscriber station (SS)
 - VLAN-multiplexing at those ports is essential
 - C-Tag
- Bridge does the hard work
- 802.16 MAC/PHY simply provides point-to-point links from bridge ports to SS ports
 - lower layers are transparent
Issues that Arise

• 802.16 MAC transports frames on connections
• Currently, connections are not identified with the SS port to which they are connected.
 – This can be easily remedied within IEEE Std 802.16
• Requires the following:
 – 802.16 MAC must receive frames from bridge along with identification of the bridge egress port.
 – 802.16 MAC must hand frames to bridge along with identification of the bridge ingress port.
• But there is no physical bridge port
• Multiplexing/demultiplexing required at the bridge.
 – Use some tag (such as S-Tag) to multiplex?
Bridge-Centric Architecture

- Multiple SS Ports per SS
- One SS per SS Port
- Connections labeled by SS Port

- 802.1Q Bridge
- BS Port
- SS Port 1
- SS Port 2
- SS Port 3

- SS Port 1
- SS Port 2
- SS Port 3

- SS a
- SS b

- MAC SAP
- MAC CPS
- PHY

- Convergence Sublayer

- Multiplex
- Demultiplex

- One CS instance per SS
- Port-aware CS

- Unidirectional Connections
- Multiple Connections per SS Port
- One SS Port per Connection
- Connections labeled by SS Port

- All Connections linked via PHY
 [several examples highlighted]
MAC Service

indication (destination_address, source_address, mac_service_data_unit, priority, drop_eligible, frame_check_sequence, service_access_point_identifier connection_identifier)

request (destination_address, source_address, mac_service_data_unit, priority, drop_eligible, frame_check_sequence, service_access_point_identifier connection_identifier)

• This looks like the 802.1Q ISS
• Can use service_access_point_identifier as the port identifier
• What protocol do we use to express that parameter?
Outstanding Issues

• Are there flaws in this architectural model?
• Does 802.1 specify the protocol for identifying the bridge port in a multiplexed frame emerging from a single point? What is the standard tag?
• It’s preferable for 802.16 to specify an 802.1 protocol rather than inventing one, because:
 – It would be more likely to work correctly.
 – It opens up the possibility of introducing standardized bridging hardware/software implementations into 802.16 base stations