Submission Title: [60GHz Applications and Propagation Characteristics]
Date Submitted: [8, September, 2008]
Source: [Katsuyoshi Sato, Hirokazu Sawada, Ryuhei Funada, Hiroshi Harada, Shuzo Kato, Hiroyuki Nakase, Masahiro Umehira]
Company [National Institute of Information and Communications Technology, Tohoku University, Ibaraki University]
Address [3-4, Hikarino-Oka, Yokosuka, Kanagawa, 239-0847, Japan]
Voice:[+81.46.847.5096], FAX: [+81.46.847.5079], E-Mail:[satox@nict.go.jp]
Re: []

Abstract: [This contribution describes 60GHz propagation measurement of several condition.]

Purpose: [Contribution to VHT/mmW TG3c joint meeting.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
60GHz Applications and Propagation Characteristics

Katsuyoshi Sato, Hirokazu Sawada, Ryuhei Funada, Hiroshi Harada, Shuzo Kato, Hiroyuki Nakase and Masahiro Umehira

National Institute of Information and Communication Technology (NICT), Japan
Summary

- TG3c has adopted CM2.3 channel model for NLOS residential environments – this was created by eliminating LOS component from LOS channel model, and, later the real measurements validated this as a good channel model for severe communications environments.

- This CM2.3 is good for beacon signal transmission from PNC (Picone coordinator) with Omni antenna at both PNC and Device up to 10 m coverage (typical coverage of WPAN).

- NLOS environments could be defined in many other ways according to different applications such as beaconing, desktop environments, intra room communications, long transmission with very high antenna gain – which generates very few delay spread.
Agenda

- Introduction

1. CM2.3: A valid NLOS channel model
 i. Metal shadowing: Cabinet shadowing
 ii. PC shadowing

2. Various NLOS environments and measurements
 i. Common mode: up 10 m with Omni antenna - beaconing
 ii. Long transmission: Door penetration
 iii. PC Peripheral: Desktop penetration

3. High antenna gain applications
 i. Delay spread
 ii. Beam forming antenna

Conclusion
CM2.3: A valid NLOS channel model

NLOS residential measurement

Floor plan of residential environment
Example PDPs (Power delay profile) in NLOS residential environment (Beam width: Tx=30, Rx=30)

- Direct-path component remains in NLOS measurement
- TSV model can model NLOS residential channels

NLOS direct-path component with the penetration loss of the door

Clusters
Metal Blocked: Example of Delay profile
Both antenna faced to each other

40 dB down due to shadowing
Almost same with/without shadowing object
Metal Blocked: Example of Delay profile

Both antenna faced to wall

- Relative power [dB]
- Excess delay [ns]

40 dB down due to shadowing
Non-direct path reflected on the wall:
Independent on the object
PC Blocking: Measurement environment

LoS environment

NLoS environment

Shadowing object: PC's

Antenna
- Conical horn antenna
- Beam width: 30° (16dBi)
- Polarization: V, H, C
- Antenna height: 1m

Transmission (TX) antenna

Reception (RX) antenna
Materials
- Wall, floor: Concrete
- Window: Glass
- Door: wood
- Desk, White board, Refrigerator: Metal
- TV, PC: Plastic + Metal

Antenna
- Conical horn
- Beam width: 30° (16dBi)
- Polarization: V, H, C
- height: 1m

Measurement condition
- Distance: 1, 2, 3m
- Rotation every 10 degree
PC Blocking: NLoS environment

Materials
- Wall, floor: Concrete
- Window: Glass
- Door: wood
- Desk, White board, Refrigerator: Metal
- TV, PC: Plastic + Metal

Antenna
- Conical horn
- Beam width: 30° (16dBi)
- Polarization: V,H,C
- Height: 1m

Measurement condition
- Distance: 3m
- Rotation every 10 degree
NLOS: Door - Measurement environment

- **Distance**: 1-3 m
- **Door**: obstacle between Tx and Rx
- **Antenna Height**: 1.1 m
- **Controller**
- **Network Analyzer**
- **Tx**
- **Ceiling Height**: 2.47 m
- **Wall side**
- **Window**
- **3.57 m**
- **6.85 m**

Floor plan of NLOS residential environment

- **Rotation Table (Step 5°)**
Measurement conditions

<table>
<thead>
<tr>
<th>Instrument</th>
<th>HP8510C VNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center frequency</td>
<td>62.5 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>3 GHz</td>
</tr>
<tr>
<td>Time resolution</td>
<td>0.333 ns</td>
</tr>
<tr>
<td>Distance resolution</td>
<td>19.1 cm</td>
</tr>
<tr>
<td># of frequency points</td>
<td>801</td>
</tr>
<tr>
<td>Frequency step</td>
<td>3.75MHz</td>
</tr>
<tr>
<td>Times of average</td>
<td>128 times</td>
</tr>
</tbody>
</table>

- Calibration performed with 1m reference separation
- Time resolution and distance resolution were determined by bandwidth
Measurement conditions (cont’)

- **Antenna**: Conical horn antenna
- **Polarization**: Vertical
- **Beam-width**: Tx:30 and Rx 30

Conical horn antenna
Beam-width 30 deg
Penetration loss was measured to be more than 50 dB. TX antenna: Omni(4dBi), RX antenna: 15 degree(22dBi)
Penetration measurement
~ Low wooden desk ~

Without desktop (Direct) : -42.2 dB

<table>
<thead>
<tr>
<th>Position</th>
<th>Received Power[dB]</th>
<th>Loss [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-52.7</td>
<td>-10.5</td>
</tr>
<tr>
<td>1</td>
<td>-59.7</td>
<td>-17.5</td>
</tr>
<tr>
<td>2</td>
<td>-58.7</td>
<td>-16.5</td>
</tr>
<tr>
<td>3</td>
<td>-61.1</td>
<td>-18.9</td>
</tr>
<tr>
<td>4</td>
<td>-66.2</td>
<td>-24.0</td>
</tr>
<tr>
<td>5</td>
<td>-65.9</td>
<td>-23.7</td>
</tr>
<tr>
<td>6</td>
<td>-60.5</td>
<td>-18.3</td>
</tr>
<tr>
<td>7</td>
<td>-64.9</td>
<td>-22.7</td>
</tr>
<tr>
<td>8</td>
<td>-77.0</td>
<td>-34.8</td>
</tr>
</tbody>
</table>

Delay Spread : 0.26 nsec

Penetration loss: 10dB
NLOS: Penetration measurement
~ meeting desk ~

Without desktop (Direct) : -41.0 dB

<table>
<thead>
<tr>
<th>Position</th>
<th>Received Power [dB]</th>
<th>loss [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-65.19</td>
<td>-24.19</td>
</tr>
<tr>
<td>1</td>
<td>-66.9</td>
<td>-25.9</td>
</tr>
<tr>
<td>2</td>
<td>-71.4</td>
<td>-30.4</td>
</tr>
<tr>
<td>3</td>
<td>-76.0</td>
<td>-35</td>
</tr>
<tr>
<td>4</td>
<td>-81.8</td>
<td>-40.8</td>
</tr>
<tr>
<td>5</td>
<td>-67.4</td>
<td>-26.4</td>
</tr>
<tr>
<td>6</td>
<td>-68.7</td>
<td>-27.7</td>
</tr>
<tr>
<td>7</td>
<td>-63.5</td>
<td>-22.5</td>
</tr>
<tr>
<td>8</td>
<td>-76.4</td>
<td>-25.4</td>
</tr>
<tr>
<td>9</td>
<td>-75.9</td>
<td>-34.9</td>
</tr>
<tr>
<td>10</td>
<td>-65.3</td>
<td>-24.3</td>
</tr>
<tr>
<td>11</td>
<td>-80.3</td>
<td>-39.3</td>
</tr>
<tr>
<td>12</td>
<td>-74.9</td>
<td>-33.9</td>
</tr>
</tbody>
</table>

Delay Spread : 0.51 nsec
RMS delay spread analysis of CM2.3

- 30 dB cut-off and no cut-off thresholds (*) give no difference in RMS delay spread
- Continuous channel and discrete channels generated from the continuous give no difference in RMS delay spread
- CM2.3 ($W_{Rx}=30$ deg with -30 dB cut-off threshold) (same result as previous)
 - 90th percentile of CDF: 12.5 ns, and 100th percentile of CDF: 30.8 ns
- W_{Rx} of 15 deg with -30 dB cut-off threshold
 - 90th percentile of CDF: 7.7 ns, and 100th percentile of CDF: 18.8 ns

D_{rms} CDF with 30 deg (Original CM2.3) D_{rms} CDF with 15 deg
High Antenna Gain applications

To transmit LONG distance such as 30 m, a 30 dBi antenna gain will be required.

In such case, the measured delay spread is very small (a couple of ns with 5 degree HPBW antenna)

Direct as well as reflective wave is good enough for communications

TG3c specification includes beam forming to track the best and 2nd best beam for more reliable communications
Conclusion

NLOS environments may be defined in various ways according to different applications.

CM2.3 channel model has been validate as a good channel model for beacon signal transmission to cover up to 10 m in NLOS environments with Omni antenna.

Beam forming antenna will resolve delay spread issue a lot.