Submission Title: [Introduction of vertically connected wireless system]
Date Submitted: [14 JAN, 2004]
Source: [Ami Kanazawa and Hiroyo Ogawa]
Company [Communication Research Laboratory, Independent Administrative Institution]
Address [3-4 Hikarino-oka, Yokosuka, Kanagawa, 239-09847 Japan.]
Voice:[81-46-847-5066], FAX[81-46-847-5079]
E-Mail:[ami@crl.go.jp]

Abstract: [Millimeter-wave vertically connected wireless system]
Purpose: [Contribution to millimeter-wave interest group at January 2004 meeting]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
60GHz band Application
-Millimeter-wave vertically connected wireless link -
Expectation of wireless link for broadcasting
Problems of receiving satellite broadcasting signals

Satellite broadcasting (BS, CS) provides high-quality services. However some apartment buildings can not receive signals, because of obstacles for satellite direction, no balconies for satellite direction, etc.
Demands for wireless re-broadcasting system

- Wide band transmission.
- Flexible extension of contents.
- Easy set up.
- Low cost.
- Un-license system.

60GHz band

- Wide band transmission.
- Small sized devices.
- Un-license band.
Vertically connected wireless link

Re-broadcasting system between the rooftop satellite antenna with individual receivers at balconies

Special features:
- flexible wireless link
- easy set-up
- easy extension
- low cost

60 GHz band is used
Current Standards for un-license band (Japan)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlicensed band</td>
<td>59-66 GHz</td>
</tr>
<tr>
<td>Output power</td>
<td>≤10 mW (+50 %, -70 %)</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>≤47 dBi</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>Max. 500 ppm</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>≤2.5 GHz</td>
</tr>
</tbody>
</table>
Self heterodyne scheme

- Tx transmits modulated signals with local signal.
- Rx obtains BS-IF signals by using the received local signal.

Special features:
- Rx can cancel the phase noise problem.
- Tx can use low cost local oscillator. / Rx does not need local oscillator.
Definitions for Link Budget Calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission power</td>
<td>10 mW</td>
<td></td>
</tr>
<tr>
<td>Antenna Gain (Tx, Rx)</td>
<td>23 dBi</td>
<td></td>
</tr>
<tr>
<td>Transmission distance</td>
<td>33 m</td>
<td>10 F building is assumed</td>
</tr>
<tr>
<td>Loss</td>
<td>98.4 dB</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>1.38e-23 JK</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>300 K</td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>6 dB</td>
<td></td>
</tr>
<tr>
<td>C/N for BS</td>
<td>26 dB</td>
<td>at BS satellite antenna</td>
</tr>
<tr>
<td>C/N for CS</td>
<td>19 dB</td>
<td>at CS satellite antenna</td>
</tr>
</tbody>
</table>
Link Budget

Two examples of transmission media are shown here.

Type A: transmission of BS signals

Type B: Transmission of BS and CS signals

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>300 MHz</td>
<td>780 MHz</td>
</tr>
<tr>
<td>NF deterioration</td>
<td>9 dB</td>
<td>9 dB</td>
</tr>
<tr>
<td>CNR cut off (BS)</td>
<td>14 dB</td>
<td>14 dB</td>
</tr>
<tr>
<td>CNR cut off (CS)</td>
<td>–</td>
<td>8 dB</td>
</tr>
<tr>
<td>Margin for BS</td>
<td>11 dB</td>
<td>9.7 dB</td>
</tr>
<tr>
<td>Margin for CS</td>
<td>–</td>
<td>9.8 dB</td>
</tr>
</tbody>
</table>

From link budget, 33 m (= 10F building) transmission is possible.
Developed Prototype

For BS signal transmission

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency (RF)</td>
<td>59.01-60.345 GHz</td>
</tr>
<tr>
<td>Local tone (Lo)</td>
<td>59.01 GHz</td>
</tr>
<tr>
<td>IF frequency</td>
<td>1032.23-1335.25 MHz</td>
</tr>
<tr>
<td>Total power</td>
<td>10 mW</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>23 dBi (Tx, Rx)</td>
</tr>
<tr>
<td>Diameter</td>
<td>11 cm</td>
</tr>
<tr>
<td>Weight</td>
<td>600 g (include the metal fittings)</td>
</tr>
</tbody>
</table>
Antenna pattern

23 dBi antenna (beam width is about 5 degrees)
Frequency Arrangement

BS-IF signals

10.10562 1126.96 1241.28 1318.00MHz

10.056GHz

60.06GHz

60.33GHz

Local signal

ARIB STD-T69
Measurement in an apartment building

Distance:
- 14.7 m
- 36.5 m

Diagram shows:
- External environment
- Indoor environment
- Transmitter and receiver locations

Ami Kanazawa, CRL
Measurement condition

Transmitter

Receiver
CIR characteristics

![Bar chart showing CNR for different BS channel numbers and floor levels]

- 14 dB (Analog)
- 11 dB (Digital)

Enough quality signals were received for all floors.
CIR characteristic

Condition: two transmitters are set.

CIR >12 dB is required when plural transmitters are set in the apartment.
Conclusion

Vertically connected wireless link is introduced.
• CRL developed prototypes for BS transmission.
• Link Budget is calculated.

In the measurements, we confirmed that
• BS-signal transmission with high quality in 5F apartment
• CIR > 12 dB is required when multiple transmitters are set.