Project: <u>IEEE P802.15 Working Group for Wireless Personal Area</u> <u>Networks (WPANs)</u>

Submission Title: Applicability of NG-SUN to time-sensitive industrial applications Date Submitted: May 12, 2024

- Source: Sangsunng Choi (A2UICT), Tae-Joon Park, Jinhyuk Yim (ETRI)
- **Re:** TG4ad Next Generation SUN PHYs
- Abstract: This contribution describes a potential application for Next Generation SUN PHYs.
- Purpose: Discussion
- **Notice:** This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the South Korea government (MSIT, 2021-0-00040, Development of intelligent stealth technology for information and communication resources for public affairs and missions).
- **Release:** The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Industrial Applications

- Industrial communications area with increasing requirements
 - Condition Monitoring (CM)
 - State monitoring by monitoring a large number of different sensors
 - Synchronization for consistent time base for all signals form the sensors is more important than the real-time aspect.
 - ZigBee, Bluetooth
 - Process Automation (PA)
 - Continuous production processes for large quantities of a certain product
 - For quality assurance, high data rates must be allowed to recode and/or transmit very large amounts of data
 - WirelessHART, WSAN
 - Factory Automation (FA)
 - Discrete manufacturing processes for machining, assembling, testing, packing, etc
 - Closed loop feedback systems for each distinct steps are automated and controlled by a variable number of sensors and actuators
 - Very short and fast movements have to be controlled in a limited spatial extent
 - No standardized wireless technologies yet

X Source: Steven Dietrich et al., "Performance Indicators and Use Case Analysis for Wireless Networks in Factory Automation", IEEE ETFA 2017

Standardization on Industrial Network(I)

- Evolution of wired industrial network
 - Isochronous real-time for closed-loop control is an essential requirements for industrial network

Standardization on Industrial Network(II)

- Wireless industrial network for providing isochronous real-time service
 - Not yet standardized
 - Why not consider NG-SUN?

Media Specific MAC/PHY Support for TSN

Source : Mikhail Galeev et al., Next-Generation Wi-Fi Networks for TimeCritical Applications, Intel, 2019. Industrial Ethernet Book Issue 117 / 8, Wireless TSN use cases and standards challenges Wireless User Requirements for the Factory Workcell *

		Class 0	Class 0 Class 1	
Typical		8	10	10
# OF IIITIKS	Maximum	24	30	30
Undete Data (Hz)	Typical	125	125	25
Update Rate (Hz)	Maximum	1000	2000	125

Class 0: Safety

- highly critical, for example, safety integrated systems.
- applications : typically used to prevent damage to equipment or personnel

Class 1: Closed Loop Regulatory Control

- multiple single-input single-output control loops, designed to regulate local variables such as flow, speed, etc.
- Applications : robot end-effectors, arc-welders, laser cutters and precise position-based arm control etc

Class 2: Closed Loop Supervisory Control

- applications : Discrete manufacturing, tasks are completed sequentially

※ NIST Advanced Manufacturing Series 300-8 Revision 1 Wireless User Requirements for the Factory Workcell

Motivation of Ultra Low Latency SUN

Slide 7

Basic Idea of Ultra Low Latency SUN

- Deterministic Latency(Wi-SUN, 802.15.4e) using Contention Free Period
 - Short length, High Update Rate for supporting wireless TSN
 - Downlink : LTF in Preamble is used for Downlink symbol timing estimation
 - Uplink : LTF is used for Uplink preamble

$$\begin{split} T_{Cycle} &> T_{pre} + 480 \ x \ N_{DownLinkUserCount} + T_{GI} + 480 \ x \ N_{UpLinkUserCount} \ [\mu s] \\ Ex) \ N_{DownLinkUserCount} &= N_{UpLinkUserCount} = 20 \\ T_{Cycle} &> T_{pre} + T_{GI} + 19.2 \ [ms] \end{split}$$

Basic Idea of Ultra Low Latency SUN

- Deterministic Latency(Wi-SUN, 802.15.4e) using Contention Free Period
 - Short length, High Update Rate for supporting wireless TSN
 - Downlink : LTF in Preamble is used for Downlink symbol timing estimation
 - Uplink : LTF is used for Uplink preamble

Feasibility Experiments(1)

- Configuring a test system to verify the applicability of wireless TSN in industrial applications
 - 120 Links / 500Hz, 5 Links / 8KHz
 - Operating Frequency : 5GHz, 6GHz

OFDM Parameters							
Signal Bandwidth	20 MHz						
Number FFT Size	64						
Subcarrier spacing	312.5KHz						
The number of active subcarrier	52 for data						
OFDM symbol duration	3.2 µs						
Guard interval (Cyclic Prefix)	0.8 µs						
Total OFDM symbol duration	4.0 µs						
Modulation	QPSK						

	Sensitivity	Bits/User	Code Rate	
QPSK	-72	312bits	1	Uncoded
QPSK	-79	150bits	0.5	Convolution code
QPSK	-83.47	175bits	0.68	EG-LDPC
QPSK	-77.97	175bits	0.68	EG-LDPC, TDL channel

Sangsunng Choi (A2UICT)

Feasibility Experiments(2)

- Periodic motor position control system for industrial applications
 - 1 AP + 4 Links (2 Sensors + 2 Actuators)
 - Update Rate : 33.3 Hz (Cycle Time : 30ms)

Scenario of Experiments(1)

✤ Case 1) Wired motor control system : I-Ethernet

If you continuously send control signals to both motors at 30ms intervals and stop the motor after a certain period of time, you can see that both motors stop at the same position

Scenario of Experiments(2)

✤ Case 2) Wireless motor control system : Wi-Fi

If you continuously send control signals to both motors at 30ms intervals and stop the motor after a certain period of time, you can see that both motors stop at different positions.

Scenario of Experiments(3)

Case3) Wireless motor control system : ULL-SUN * ULL-SUN : Ultra Low Latency SUN

If you continuously send control signals to both motors at 30ms intervals and stop the motor after a certain period of time, you can see that both motors stop at the same position

Comparison of Experiments

Case 1) Ethernet

Case 3) ULL SUN

Case 2) Wi-Fi

Experiment Results

Verified the applicability of wireless TSN in industrial applications

- Maximum Update Rate : 8000 Hz
- Maximum # of links : 120
- Satisfy requirement of Isochronous Real Time for wireless TSN

Bandwidth	Active tones	# of links	Update Rate (Hz)
20MHz	52	5	8000
	52	120	500

* Wireless User Requirements for the Factory Workcell

		Class 0 Class 1		Class 2
# of links	Typical	8	10	10
# of links	Maximum	24	30	30
Undete Dete (Un)	Typical	125	125	25
Update Rate (Hz)	Maximum	1000	2000	125

♦ When applied to MR-OFDM with current 1094 KHz bandwidth

• The symbol rate is 8-1/3 ksymbol/s, which corresponds 120 µs per symbol.

LTF(1 Symbol) **PSDU** PSDU **PSDU**

* Resizable to integer multiples(n) of unit frame size : 4 x n Symbols (480 x n µs)

1 Slot : 4 Symbols (480 µs)

$$T_{Cycle} > T_{pre} + 480 \times N_{DownLinkUserCount} + T_{GI} + 480 \times N_{UpLinkUserCount}$$
 [µs]

Expectation of NG-SUN(2)

✤ When applied to MR-OFDM with current 1094 KHz bandwidth

- Update Rate : 50 Hz , # of links : 40
- Utilize for Isochronous Real Time service for limited levels of wireless TSN

Bandwidth	Active tones	# of links	Update Rate (Hz)
1094KHz (MR-OFDM)	104	40	50
Control Server	AP D2	Ex> N _{DownLinkUs} T _{Cycle} > 20 devices cal simultaneous times per sect Dn 40 devices c simultaneo t	$erCount = N_{UpLinkUserCount} = 20$ $T_{pre} + T_{GI} + 19.2 [ms]$ n upload and download data ly at 20ms cycle time (50 ond) OR an upload or download data usly at 20ms cycle time (50 imes per second)

Expectation of NG-SUN(3)

- When more bandwidth is available, NG-SUN can meet the isochronous realtime requirements for wireless TSN.
 - 2.4GHz, 5GHz, 6GHz ISM
 - TVWS

OFDM Parameters						
Signal Bandwidth	20 MHz					
Number FFT Size	64					
Subcarrier spacing	312.5KHz					
The number of active subcarrier	52 for data					
OFDM symbol duration	3.2 µs					
Guard interval (Cyclic Prefix)	0.8 µs					
Total OFDM symbol duration	4.0 µs					
Modulation	QPSK					

Bandwidth	Active tones	# of links	Update Rate (Hz)
201411	52	5	8000
20MHz	52	120	500
Bandwidth	Active tones	# of links	Update Rate (Hz)
	52	5	4000
IUMHZ	52	60	500
Bandwidth	Active tones	# of links	Update Rate (Hz)
C) (11)	52	5	2000
5MHz	52	30	500

NG-SUN Applications

- ✤ Applicability in various fields
 - Low Rate, Long Range service, such as Smart City : Multi-slot(repetition)
 - Low Rate, Short Range feedback control of Manufacturing process, such as TSN : Singleslot, Ultra-short cycle
 - High rate, short range service that mixes A/V and control data, such as in buildings : Multislot(aggregation)
 - Low Rate, Long Range Multi-slot(repetition), Smart City

User 1	User 1	User 1	User 2	User 2	User 2	User 3	User 3	User 3	
(PDU 1)									

Low Rate, Short Range – Single-slot, Ultra-short cycle feedback control

User 1	User 2	User 3	User 4	User 5	User 2	User 3	User 8	User 9	
(PDU 1)									

High Rate, Short Range – Multi-slot(aggregation) – Smart factory/building(Video, Audio, Control data)

User 1	User 1	User 1	User 2	User 2	User 2	User 2	User 3	User 3	
(PDU 1)	(PDU 2)	(PDU 3)	(PDU 1)	(PDU 2)	(PDU 3)	(PDU 4)	(PDU 1)	(PDU 2)	

May 2024

Security

 \circ

Covert Communications

Covert Communications for WSN

- Protect & conceal sensitive packet
 - Generate random seed & share
 - Allocate packet to certain time slot
 - Extract/Reassemble packet

Considering the NG-SUN PHY standard for time-sensitive applications

- Ultra-Reliable and ultra Low-Latency
- \Short length, High Update Rate for supporting wireless TSN
- Considering the NG-SUN PHY standard based on wideband OFDM
 - Existing Wi-SUN system based on sub-giga frequency band-
 - The Korean government supplied the 6GHz band as a broadband unlicensed frequency (5,925~7,125MHz, 1.2GHz).

Thanks for Listening ! Q&A