Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Ranging Accuracy Evaluation under TG6ma Communication Scenarios Date Submitted: May 14th, 2025 Source: Daisuke Anzai, Yuhei Oguri, Shunsuke Ishiguro, Takumi Kobayashi Company: Osaka Metropolitan University, Japan Address: Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan Voice: +81-52-735-5389, FAX: +81-52-735-5389, E-Mail: d.anzai@omu.ac.jp

Re: In response to call for technical contributions

Abstract: This provides a preliminary investigation of the effect of interference cancellation on UWB ranging accuracy under multiple BAN coexistence situations, and some simulation results are discussed.

Purpose: Material for discussion in P802.15.6a TG corresponding to comments in EC Meeting

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Ranging Accuracy Evaluation under TG6ma Communication Scenarios

Daisuke Anzai, Yuhei Oguri, Shunsuke Ishiguro, Takumi Kobayashi Nagoya Institute of Technology (NIT)

Introduction

- Ranging is a key issue in various kinds of UWB applications, including IEEE 802.15.6ma, 4ab, and 4z
- UWB techniques have the potential to achieve high accuracy in supporting important applications in HBAN and VBAN
- It is important to discuss the ranging accuracy under multiple BAN coexistence situations <u>under</u> <u>the BAN channel models</u>

UWB ranging in CFP

• It is more realistic that ranging is performed in contention free period (CFP), which results in the realization of both data transmission and ranging in the same period

Propagation model in a hospital room^[1]

Parameters		Values	
a _l	γ_0	-4.60 dB	
	Г	59.7	
t _l	1/λ	1.85 ns	
L	\overline{L}	20	

 a_l : Path amplitude t_l : Path arrival time φ_l : Path phase $\delta(t)$: Dirac function Γ : Exponential decay γ_0 : Rician factorL: Number of the arrival paths

[1]: K. Takizawa, T. Aoyagi, H. -B. Li, J. -i. Takada, T. Kobayashi and R. Kohno, "Path loss and power delay profile channel models for wireless body area networks," 2009 IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA, 2009, pp. 1-4.

Ranging accuracy evaluation (SNR: 20 dB)

In: Assumed 0-5

Fading: flat Sampling frequency at receiver: 0.5, 1, 2 GHz Cross-correlation detection AWGN: SNR of 20 dB

 d_{IR} : Determined by uniform random numbers of 1-6 m each

Technical requirement

Achieve a ranging accuracy of below 0.3 m

	0.5 G H z	1.0 G H z	2.0 G H z
MSE [m]	0.754814	0.563771	0.044247

The sampling rate of 2 GHz satisfied the requirement

Ranging accuracy evaluation (SNR: 40 dB)

 $d_{\rm TR}$ = Determined by uniform random numbers of 3-4 m

In: Assumed 0-5

Fading: flat Sampling frequency at receiver: 0.5, 1, 2 GHz Cross-correlation detection AWGN: SNR of more than 40 dB

 d_{IR} : Determined by uniform random numbers of 1-6 m each

Technical requirement

Achieve a ranging accuracy of below 0.3 m

All sampling rates satisfied the requirement under clear channel condition

Ranging accuracy evaluation under coexistence scenario

 d_{TR} = Determined by uniform random numbers of 3-4 m

In: Assumed 0-5

Fading: flat Sampling frequency at receiver: 0.5, 1, 2 GHz Cross-correlation detection AWGN: SNR of more than 40 dB

 $d_{\rm IR}$: Determined by uniform random numbers of 1-6 m each

No performance degradation was confirmed with M-sequence-based interference mitigation

Sampling frequency: 1 GHz

Coexistence of up to five interference nodes

M-sequence-based interference mitigation

UWB antenna modeling

Simulation results

$$PL [dB] = PL_0 + 10n \log_{10} \left(\frac{d}{d_0}\right)$$

Parameters	<i>PL</i> ₀ [dB] (<i>d</i> =1000 mm)	п	RMSE [dB]
Rx1@4GHz	37.6	7.45	4.41
Rx2@4GHz	50.9	6.00	2.07
Rx1@8GHz	49.0	5.39	2.05
Rx2@8GHz	59.3	2.66	1.43

Simulation results

References

- 1. D. Anzai, I. Balasingham, G. Fischer, J. Wang, "Reliable and High-Speed Implant Ultra-Wideband Communications with Transmit–Receive Diversity," EAI/Springer Innovations in Communication and Computing, pp. 27-32, March 2020.
- 2. Y. Shimizu, D. Anzai, R. C-Santiago, P. A. Floor, I. Balasingham, and J. Wang, "Performance evaluation of an ultra-wideband transmit diversity in a living animal experiment" IEEE Trans. Microw. Theory Tech., vol. 65, no. 7, pp. 2596-2606, July 2017.
- 3. D. Anzai, K. Katsu, R. Chavez-Santiago, Q. Wang, D. Plettemeier, J. Wang, and I. Balasingham, "Experimental evaluation of implant UWB-IR transmission with living animal for body area networks," IEEE Trans. Microw. Theory Tech., vol. 62, no. 1, pp. 183-192, Jan. 2014.
- 4. J. Shi, D. Anzai, and J. Wang, "Channel modeling and performance analysis of diversity reception for implant UWB wireless link," IEICE Trans. Commun., no. E95-B, vol. 10, pp. 3197-3205, Oct. 2012.