## **IEEE 802.15 WNG Total Radiated Power spectral density (***TRP***<sub>sd</sub>) by JRC <b>Date:** 11 March 2024

**Authors:** 

| Name             | Company                  | Address | Phone | Email                   |
|------------------|--------------------------|---------|-------|-------------------------|
| Friedbert Berens | <b>FBConsulting Sarl</b> |         |       | Friedbert.berens@me.com |

# Summary of *TPR*<sub>sd</sub> measurement in 2023 by JRC, ISPRA

#### 11.03.2024

**Friedbert Berens, FBConsulting Sarl** 

#### Introduction

- These slides present a summary of the measurement results contained in the *TRP*<sub>sd</sub> measurement report from the JRC in Ispra
- The Joint Research Centre (JRC) is part of the EU commission and supports the regulation activities in Europe
- "Report on Measurement Campaigns for Total Radiated Power of UltraWideBand (UWB) device to support EU RF spectrum regulation"
  - <u>https://publications.jrc.ec.europa.eu/repository/handle/JRC134860</u>
- Results should be used for the future simulation in the band extension WI in SE24
- Further measurements are planned in 2024

# Total Radiate Power spectral density (*TRP*<sub>sd</sub>)

- Total Radiated Power (TRP) is a Radio Frequency (RF) engineering term used to describe the sum of all power radiated by an antenna connected to a transmitter
- *TRP*<sub>sd</sub> represent the overall power emitted by a device in the given bandwidth (typically 1MHz)
- *TRP*<sub>sd</sub> represents an average value for the interference potential of a device in all directions.
  - In contrast to the e.i.r.p in dBm/MHz value which represents the worst case of the interference potential into one dedicated direction
- For any kind of aggregated interference investigations, the *TRP*<sub>sd</sub> value is the more appropriate value

# **Definition of** *TRP*<sub>sd</sub>

$$TRPsd = \int_{\Theta=0}^{\pi} \int_{\Phi=0}^{2\pi} \frac{P_{psd,\Theta,\Phi}}{A_r} \times r^2 \times \sin(\Theta) \, d\Theta \, d\Phi$$
(A.10)

Where:

- Radiated mean power spectral density  $P_{psd,\Theta,\Phi}$  measurement in 1 MHz (recorded) one point of the sphere depending  $\Theta$  and  $\Phi$  and frequency
- r is the radius of the sphere/measurement distance
- $\Theta$  is the elevation angle
- $\Phi$  is the azimuth angle
- $A_r$  is the effective area of the receiving antenna (measurement antenna)

#### Reference: ETSI TR 103 750 V1.1.1

#### doc.: IEEE 802.15-24/0158-00-wng0



Figure 1: Over The Air (OTA) measurement set up in the Shielded Anechoic Chamber (SAC) in full anechoic configuration.

# Basic measurement setup

# Setup: technical details



Figure 2: Measurement setup

# Device under test



Figure 3: Coordinate system associated with the DUT



Measurement procedure



Figure 4: Typical setup for a combined-axes system as shown in Appendix A of the CTIA test plan [4].

# Example 3D radiation pattern



Figure 13: Example of 3D radiation pattern

# Measurement results

Table 9: Measurement results

| UWB<br>channel | Distance<br>(m) | EIRP<br>(dBm) | EIRP <sub>sD</sub><br>(dBm/MHz) | TRP (dBm) | TRP <sub>sD</sub><br>(dBm/MHz) |
|----------------|-----------------|---------------|---------------------------------|-----------|--------------------------------|
| 5              | 1               | -13.15        | -38.25                          | -20.16    | -45.57                         |
| 9              | 1               | -13.3         | -38.11                          | -19.72    | -45.28                         |
| 5              | 3               | -12.93        | -37.95                          | -19.9     | -45.2                          |

#### Some comments to measurements

- Duty Cycle of the device has been set to the maximum possible without changing the default power settings leading to a slightly higher TX power
  - Maximum mean e.i.r.p. > 41.3dBm/MHz
  - Not fully conform to regulation
  - Simplification of measurements and increased measurement accuracy
- In all channels the *TRP*<sub>sd</sub> levels are significantly below the maximum mean e.i.r.p. value
- More directive antennas or absorbing material will increase the difference between maximum mean e.i.r.p. and *TRP*<sub>sd</sub>
- Assumption of fully omnidirectional emissions is very worst case and not realistic

### **Summary and outlook**

- Slides presented a summary of the JRC *TRP*<sub>sd</sub> measurements
- An isolated UWB device reaches an *TRP*<sub>sd</sub> level which is 7dB below the maximum mean e.i.r.p. value
  - -48.3dBm/MHz (*TRP*<sub>sd</sub>) versus -41.3dBm/MHz (maximum e.i.r.p.), mitigating factor of 7dB
- Additional gains can be assumed in real deployment scenarios for
  - Body worn devices
  - Fixed installed access point with directive antennas
  - Wall mounted device
- Additional measurements to confirm this assumptions are planned
- Future regulation should include maximum mean e.i.r.p. value and *TRP*<sub>sd</sub>
- More details: <u>https://publications.jrc.ec.europa.eu/repository/handle/JRC134860</u>

### Acknowledgment

- This presentation is based on the work of the Joint research Centre of the EU commission in Ispra
- The author of the reports are
  - Gianmarco Baldini
  - Jean-Marc Chareau
  - Fausto Bonavitacola