Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Overview of Activity of IEEE802.15 TG15.6ma for Revision of IEEE802.15.6-2012 Wireless BAN with Enhanced Dependability]

Date Submitted: [30 August 2023]

Source: [Ryuji Kohno] [1;Yokohama National University(YNU), 2;YRP International Alliance

Instiitute(YRP-IAI)]

Address [1; 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan 240-8501

2; YRP1 Blg., 3-4 HikarinoOka, Yokosuka-City, Kanagawa, Japan 239-0847]

Voice:[1; +81-90-5408-0611], FAX: [+81-45-383-5528],

Email:[1: kohno@ynu.ac.jp, 2:kohno@yrp-iai.jp]

Abstract: [This document summarizes standardization activity of IEEE802.15 Task Group(TG)6ma for revision of IEEE802.15.6 - 2012 Medical Body Area Network(BAN) corresponding to increasing for enhanced dependability in wireless sensing and controlling human and vehicle bodies for medical healthcare and automotive uses. After quick overview of IEEE802.15.6 -2012, necessity of the revision is described in such critical use cases that various types of interference such as intra BAN interference in multiple overlaid BANs, interference among BAN and other networks in some overlaid frequency band etc. Extension of BAN from human body for medical healthcare to car body for automotive uses and their combination makes a larger market and a new application in medical and automotive industries with a common standard.]

Purpose: [information]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Overview of Activity of IEEE802.15 TG15.6ma for Revision of IEEE802.15.6-2012 Wireless BAN with Enhanced Dependability

Ryuji Kohno,
Yokohama National University, Japan(YNU)
YRP International Alliance Institute, Japan(YRP-IAI)

Agenda

- 1. Demand for WBAN for Emergent Medical Healthcare Use and Huge Market of Automotive Use
- 2. Short Review of WBAN Standard IEEE802.15.6-2012
- 3. Necessity and Uniqueness for Revision of BAN with Enhanced Dependability
- 4. Channel and Environment Models for Focused Use Cases for Revision of std 15.6-2012 for Human and Vehicle BANs with Enhanced Dependability TG16.6ma
- 5. Requirement for Revision of 15.6 MAC for Human and Vehicle BANs with Enhanced Dependability TG16.6ma
- Available Technologies in PHY and MAC Layers for the Focused Use Cases for Revision of std 15.6-2012 for Human and Vehicle BANs with Enhanced Dependability TG16.6ma
- 7. Timeline of TG6ma

1. Demand for WBAN for Emergent Medical Healthcare Use and Huge Market of Automotive Use

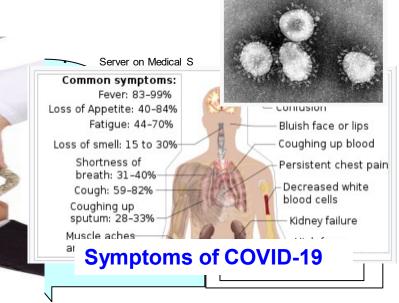
1.1 Demand of BAN for Medical Uses

- A. Emergent Problems over the world:
 - Even after COVID-19, other global pandemics may be coming.
 - Regional gap in medical services remains.
 - Population ageing is ongoing in a world.

Pandemic

Population Ageing

- **B. Challenging but Feasible Solutions:**
 - Provide Remote Vital Sensing and Therapy Using ICT and Al
 - → Prevent Pandemic, Regional Gap, and Support Elderly People
 - **♦ Promote Global Services of Medical ICT and Data Science**


C. Approach:

- (1) R&D of Enable ICT and Al Technologies for Pandemic & Daily QoL
- (2) Promote International Standard of Wireless Body Area Network (BAN) and Integrated Platform of BAN/5G/AI for Global Marketing
- (3) Regulatory Compliance of Medical Devices & Services to Ensure Safety, Reliability, Security, i.e. Dependability by Regulatory Science

1.2 Medical Inspection and Treatment by BAN

- Medical Healthcare Using BAN can perform remote real-time medical diagnosis and therapy
- To prevent pandemic against COVID-19 and medical care incident etc. in daily life.
- Remote sensing vital sign and monitoring symptoms
- > Evidence based medicine for clinical and nursing actions
- To support safe and efficient medical care for clinical staffs and patients etc.
- > Online diagnosis, PCR and other inspection
- > Protect clinical staffs and care givers with network

 WBAN can apply for preventing pandemic and supporting daily care by remote sensing and therapy in digital healthcare.

Coronavirus

1.3 Wireless BAN: Body Area Network

Tele-metering or sensing vital signs with various sensors,

ECG

EEG

SPO₂

Blood Pressure

Heartbeat

Body temperature

Glocuse level

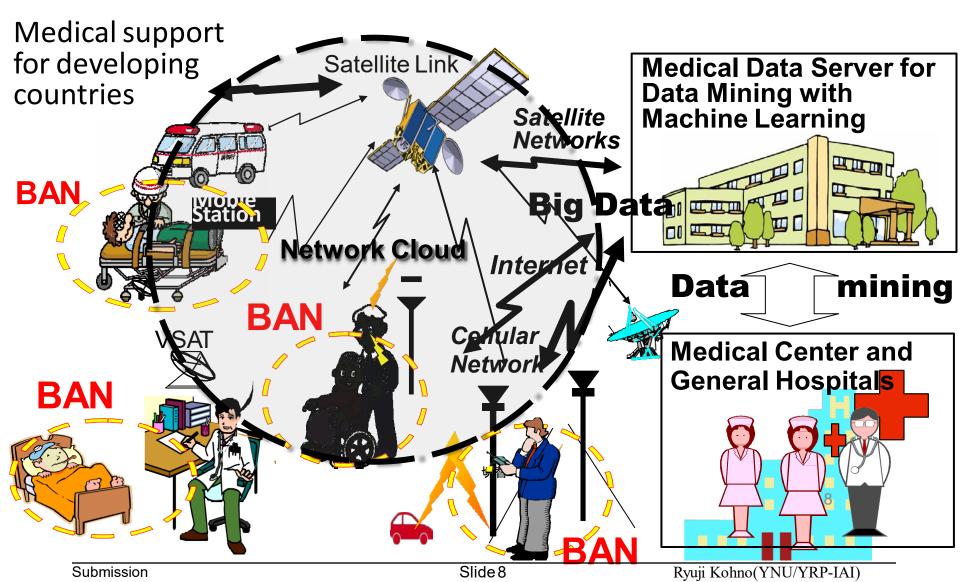
Medical images(X-ray, MRI)

and video

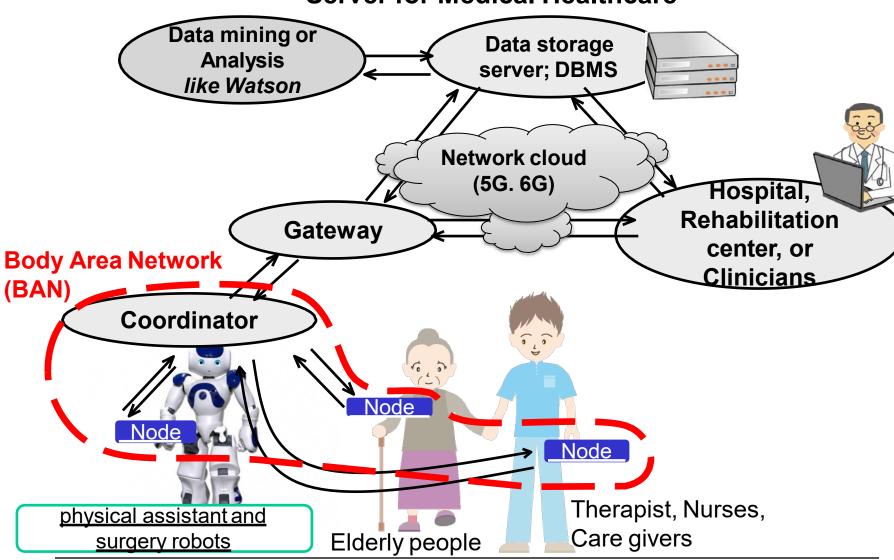
smart suit

Implant BAN

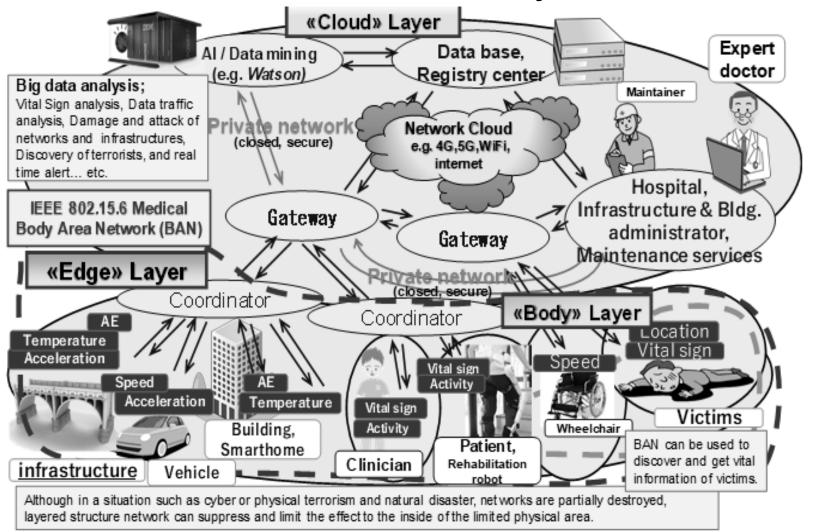
Brain-Machin-Interface(BMI)


Tele-control of Medical Equipment and Devices

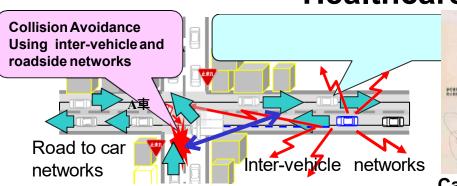
Pace Maker with ICD



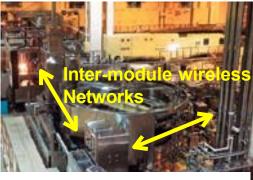
Novel Concept Intelligent Network of Vital Sensors, eHR, Medical Robots etc. Wireless Capsule Endoscope


1.4 BAN- Use Cases for Remote Medical Services

1.5 BAN-base Universal Platform with Network Cloud, Data Mining Server for Medical Healthcare

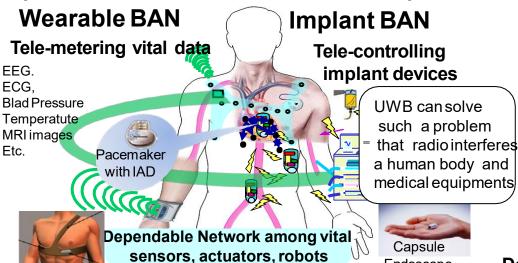


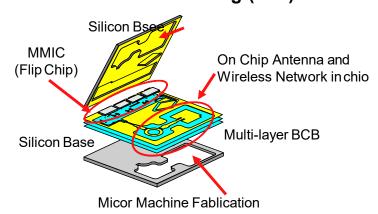
1.6 Universal Platform Based on BAN, Cloud Network, and Al Data Server for General Social Infrastructure beyond Medical Services



1.7 Extension of Use Cases of BAN beyond Medical Healthcare

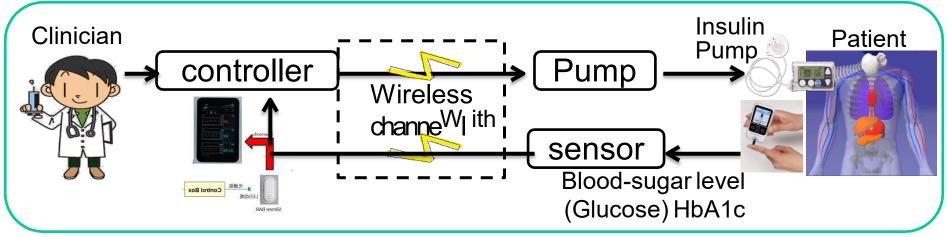
Endoscope

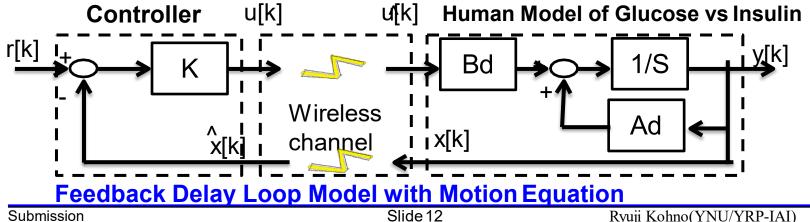



Car LAN & Wireless Harness

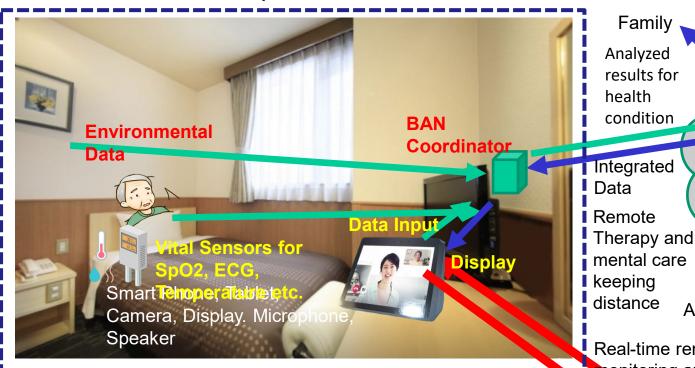
Car Navigation & Collision Avoidance Radar

Dependable Wireless Networks for Transportation


Factory Automation (FA)
Dependable Wireless Sensing
& Controlling for
Manufacturing (CIM)


Dependable Wireless System Clock in Micro Circuit & Network in Devices

Dependable BAN for Medical Healthcare


Automatic Remote Sensing Glucose and Controlling Insulin Pump for Diabetes Patients Using Wireless BAN

Wireless Feedback Sensing and Controlling Loop for Diabetes Patients

BAN Platform Use Cases in Remote Treatment for COVID-19 Patients under Quarantine at Home

Remote Maintenance of COVID-19 Patients at Home Using Platform of Integrated Vital Sensors/Wireless BAN/5G Cloud/Al **Analysis**

Data Collection and Family Analysis Analyzed results for

Cloud Remote Monitoring Service

Without Clinical Staffs. health condition of COVID-19 patents can be monitoring and rescue them immediately.

Comman

d for care

patients

distance Analyzed results

Real-time remote

monitoring and

care

Dialog

health

condition

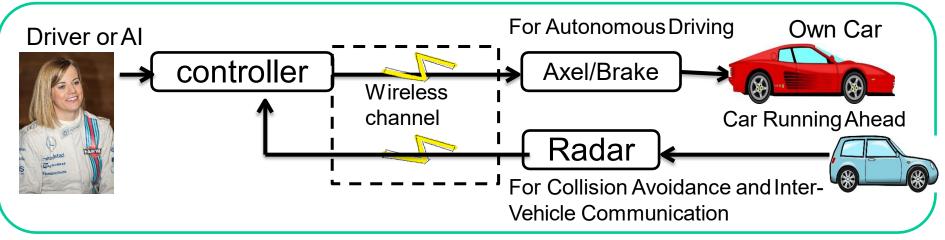
Medical Care Center and **Government Control Center**

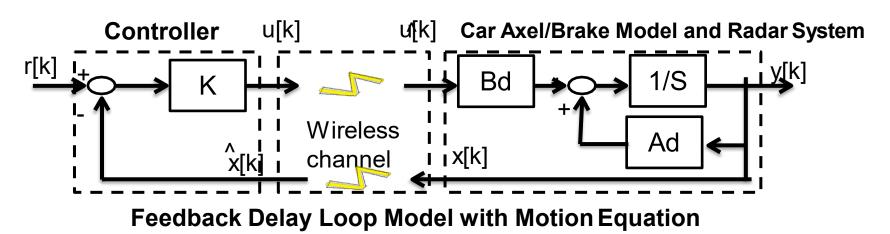
1.8 Demand of BAN for Automotive Uses

A. Increasing Demands in a world:

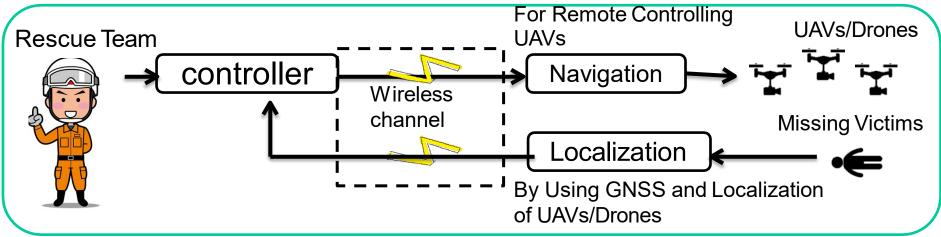
- New business promotion by applying wireless ICT to vehicle by huge alliance between automotive and telecom industries such as smart key, wireless harness
- Autonomous car driving and safety controlling of elderly drivers by ICT and data science

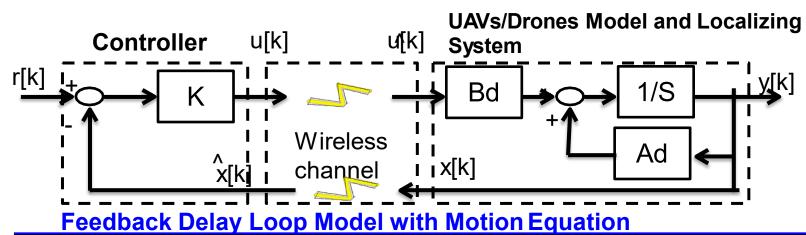
B. Challenging but Feasible Solutions:


- ◆ Provide Remote Sensing and Controlling Using ICT and Al
 - → Prevent Traffic Accidents, Jam and Co2 Emission
- **♦**Promote a New Global Business of Automotive, ICT, and Electronics


C. Approach:

- (1) R&D of Enable Technologies for Smart Vehicle and City
- (2) Promote International Standard of Wireless Body Network (BAN) and Integrated Platform of BAN/5G/Al for Global Marketing for both Medical and Automotive uses
- (3) Regulatory Compliance of Devices & Services to Ensure Safety, Reliability, Security,
- i.e. Dependability by Regulatory Science


1.9 Use of BAN for Autonomous Car Driving


Wireless Feedback Sensing and Controlling Loop for Autonomous Driving

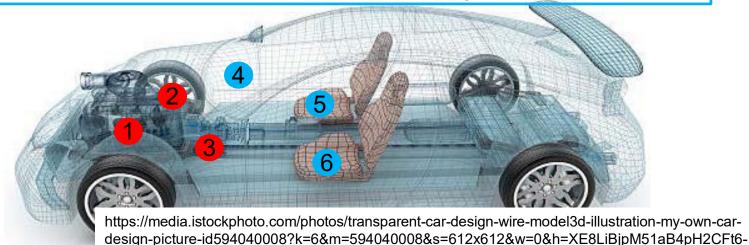
1.10 Remote Localization and Rescue of Missing Victims Using Wireless Dependable BAN of Things/M2M

Wireless Feedback Sensing and Controlling Loop for Rescue of Victims

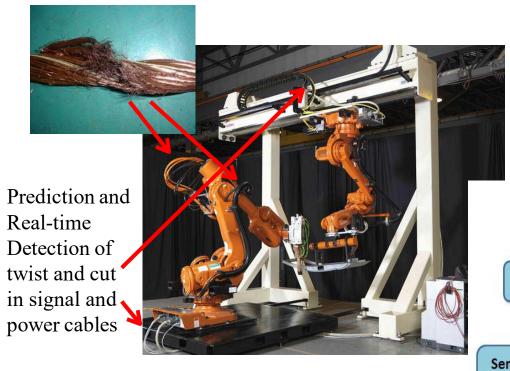
1.11 Body Area Network(BAN) of Vehicle Body

Motivation to extend human BAN(HBAN) to VBAN is to promote much dependable services by interaction between HBAN and VBAN.

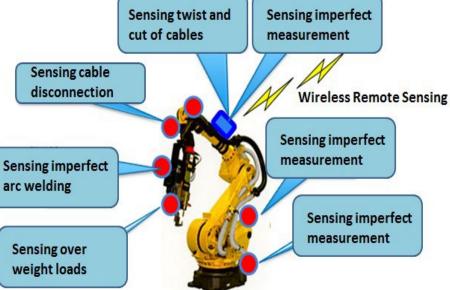
Use case of Vehicle Body Area Network(VBAN) for Engine Room


- 1. Engine diagnostic sensor and controller
- 2. Air pressure sensor, wheel health sensor and controller
- 3. Transmission monitoring sensor and controller

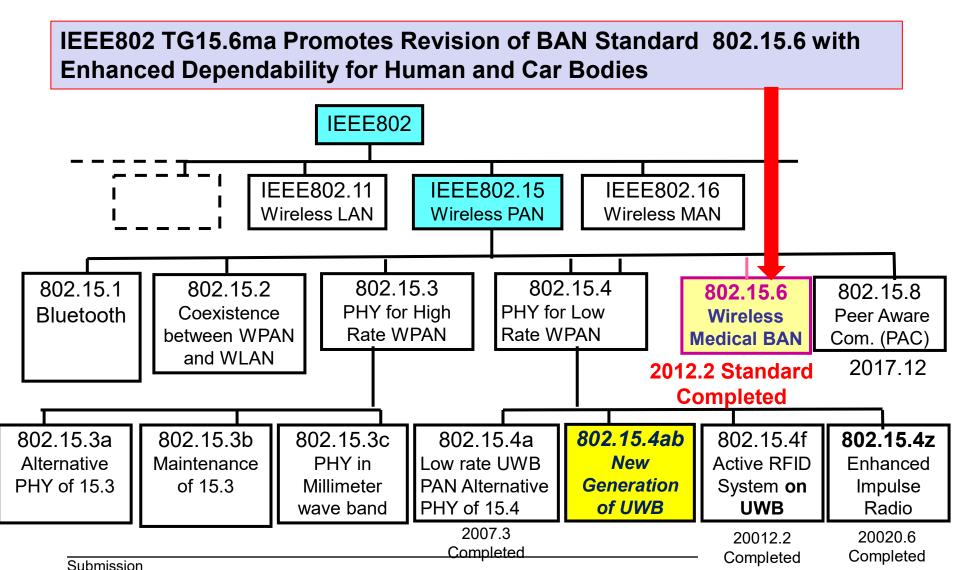
Use case of Vehicle Body Area Network(VBAN) for Cabin Room


- 4. Cabin environment sensor (temperature, brightness, humidity etc.)
- 5. Sheet sensor, health care sensors for driver

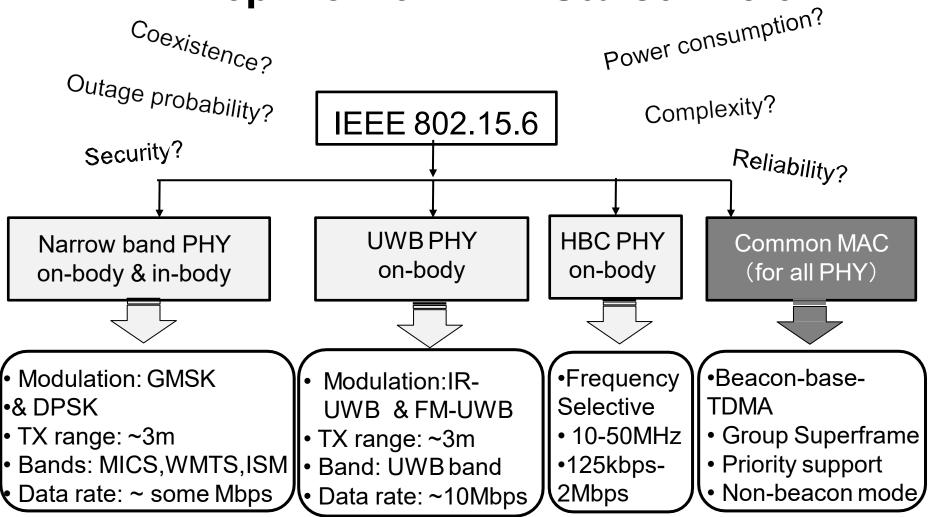
MT6IvALRPnlxPcac0RXhg=


6. Sheet sensor, health care sensors for passenger

1.12 Use case in Factory Manufacturing Line; Detection of Twist and Cut of Cables



In order to improve QoS of controlling robots in factory lines, real-time sensing and controlling with permissible feedback control loop must be important requirement



2. Short Review of WBAN Standard IEEE802.15.6-2012

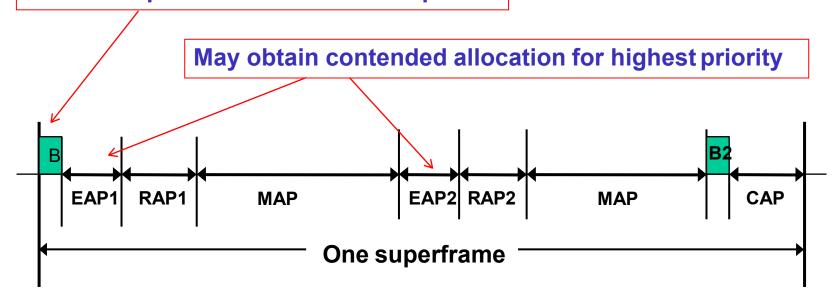
2.1 Revision of Standard BAN with Enhanced Dependability

2.2 Top View of IEEE Std 802.15.6

UWB: Ultra-wideband

HBC: Human body communication

2.3 User Priority Mapping

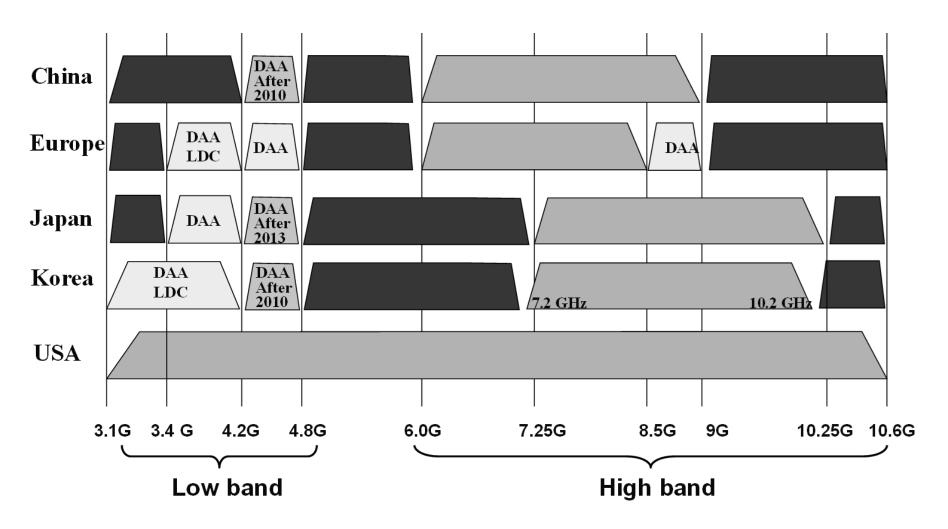

Priority level	Traffic designation	Data type
7	Emergency or medical event report	Data
6	High priority medical data or network control	Data or management
5	Medical data or network control	Data or management
4	Voice	Data
3	Video	Data
2	Excellent effort	Data
1	Best effort	Data
0	Background	Data

2.4 Three Channel Access Modes

Channel access mode	Time reference-based (superframe structure)	Beacon	Notes
I	Yes	Yes	Coordinator sends beacon in each superframe except for inactive superframes.
II	Yes	No	Coordinator establishes time reference but doesn't send beacon.
III	No	No	There is not time reference.

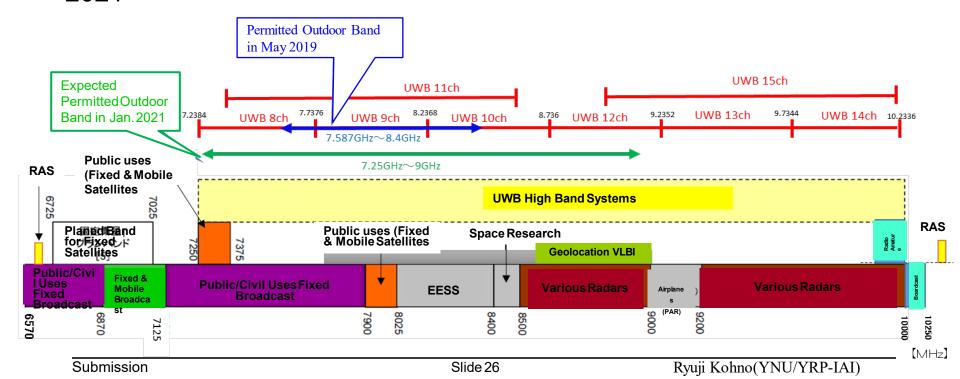
2.5 Time-referenced Superframe w/ Beacon

Clock and position of each access phase


EAP: exclusive access phase

RAP: random access phase

MAP: managed access phase


CAP: contention access phase

2.6 Worldwide UWB Regulations in 2012

2.7 Radio Outdoor Uses in the Frequency Band 7.25-9.00GHz (January 2021)

- Red lines indicate channels defined by IEEE802.15.4a.
- Although Ch 9 in 7.587-8.4GHz Blue line was allowed for outdoor use in May 2019, MIC has started investigation to allow wider band 7.25-9.00 GHz Green line wand it is expected to allow it for outdoor use in January 2021

2.8 Summary of IEEE802.15.6-2012

- A standard, IEEE Std 802.15.6TM was completed and published in Feb. 2012. In which, specifications of three PHY and common MAC are defined to support various medical and non-medical consumer applications.
- Commercial products of BAN have been sold as an enable technology supporting personal healthcare as a consumer electronics but not much approved for medical equipment.
- In PHY, ultra-wide band(UWB) is applied for high QoS use case but radio regulation for UWB results in restricting use cases.
- In MAC, hybrid contention base and free protocol can perform flexible delay and throughput for variable QoS levels of packets but its implementation complexity is too high for its complete protocol.

September 2023 doc.: IEEE 802.15-23-0455-00-06ma

3. Necessity and Uniqueness for Revision of BAN with Enhanced Dependability

3.1 Necessity for Enhanced Dependability in 15.6 BAN

1. In case of coexistence of multiple BANs

- Current existing standard IEEE802.15.6 has not been designed to manage contention and interference among overlaid BANs. The more BAN uses in dense area, the more contention and inference cause performance degradation.
- Amendment of PHY and MAC for resolving these problems in coexistence of BANs is necessary.

2. In case of coexistence with other radios

 For enhanced dependability, UWB PHY of BAN should be updated to avoid performance degradation due to interference with coexisting other narrow band and UWB networks in overlapped frequency band.

3. In case of feedback sensing and controlling loop

 Remote medical diagnosis with vital sensing and therapy and control actuators and robotics need more dependable and efficient protocol.

4. Usability and Implementation Complexity

- Interoperability with other radio networks, more flexible network topology,
- Transparency with other standards such as ETSI SmartBAN
- Capability of ranging and positioning in UWB is required for mobility and security.

3.2 Technical Challenges for Enhanced Dependability

- First of all, we should recognize that any technology in PHY and MAC cannot guarantee full dependability in every use case.
- However, we can design a new standard which can guarantee a certain level of enhanced dependability in a specific defined use case.
- As an analogy of informed consent in medical doctor to a patient, a
 manufacturer of a dependable wireless network can describe such a
 specific defined use case that the manufacture can guarantee a
 defined level of dependability showing necessary cost and
 remained uncertainty. This is an honest manner and much better
 than no guarantee for any use case.
- Therefore, an expecting standard describes a specific use case in which worst performance can be guaranteed enough high while most of exiting standards have been designed with average performance base.
- Technical requirement for the specific use case can be guaranteed.

3.3 Uniqueness different from existing standards (1/2)

- 1. MAC protocol for around packets and recursive access for feedback loop in remote sensing and controlling;
- 2. Level of dependability can be defined with showing necessary cost and remained uncertainty. This is an honest manner and much better than no guarantee for any use case.
- 3. Worst performance can be guaranteed enough high while most of exiting standards have been designed with average performance base.
- 4. Others

3.3 Uniqueness different from existing standards (2/2)

Physical(PHY) layer Technologies to satisfy technical requirement for enhanced dependability in the focused use cases

- A) In feedback loop for remote monitoring sensors or radars and feedback controlling actuators, real-time cognition of varying condition on site and adaptive reconfiguration in relatively messy, small, and dense areas are requested to guarantee worst performance with permissible delay and errors.
- B) Within a permissible limited feedback delay, propagation paths connecting between nodes and coordinator should be found to keep connectivity by diversity, channel switching etc. .
- C) For such a dynamic environment and QoS requirement changing situation, sophisticated PHY technologies are requested to guarantee minimum requirement of performance.

3.4 Focused Issues in Amendment of std 15.6 BAN with Enhanced Dependability

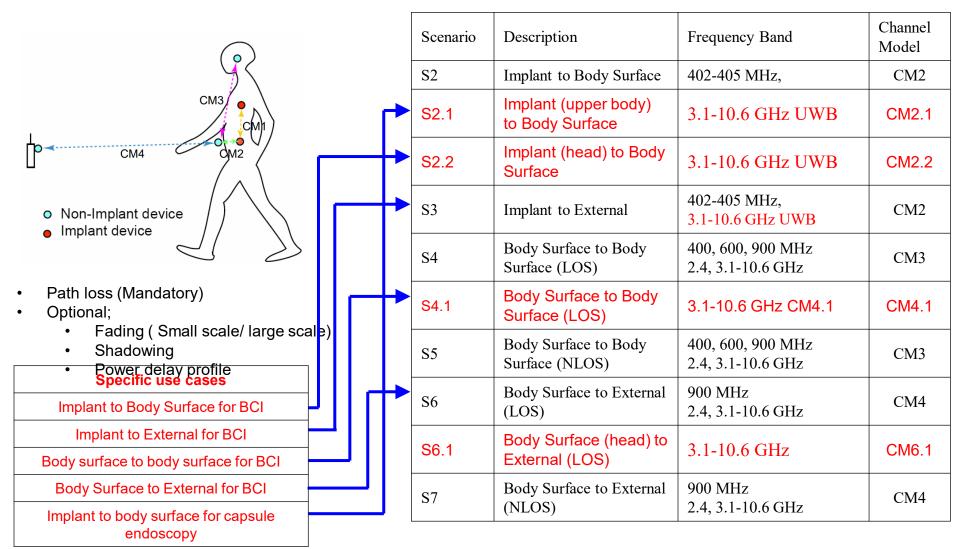
1. MAC Protocol in case of coexistence of multiple BANs

- Amendment of MAC for resolving these problems in coexistence of BANs is necessary.
- Specified MAC protocol for feedback sensing and control loop between coordinator and nodes.

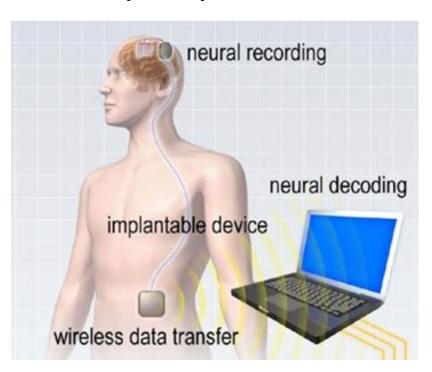
2. PHY Interference Mitigation In case of coexistence with other radios

●For enhanced dependability, UWB PHY of BAN should be updated to avoid performance degradation due to interference with coexisting other narrow band and UWB networks in overlapped frequency band.

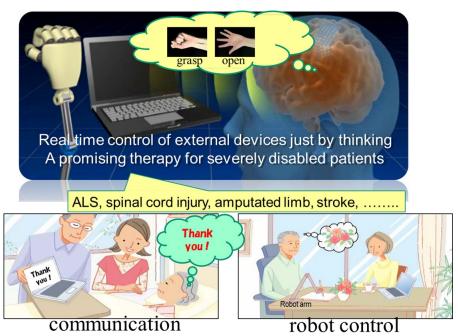
3. Usability and Implementation Complexity


- Interoperability with narrow band and UWB PHY
- more flexible network topology,
- Transparency with other standards such as ETSI SmartBAN

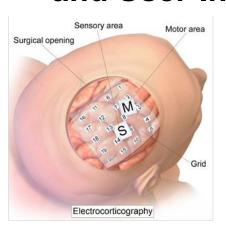
4. Ranging and Positioning Capability of UWB-BAN


Mobile nodes and coordinator of BAN need ranging and positioning of UWB-BAN

4. Channel and Environment Models for Focused Use Cases for Revision of std 15.6-2012 for Human and Vehicle BANs with Enhanced Dependability TG16.6ma

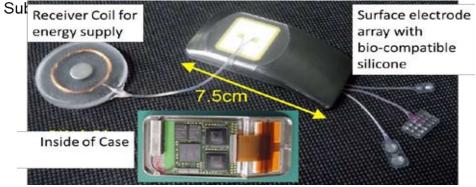

4.1 Channel models and scenarios in IEEE802.15.6ma

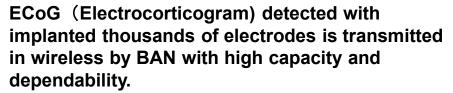
4.2 Brain-Machine-Interface(BMI): Wireless Body Area Network (BAN) with Al Machine-Learning and User-Interface

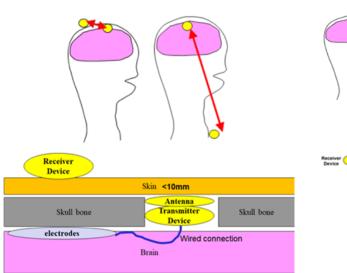


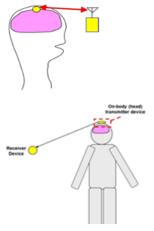
Brain-Computer-Interface(BCI) for Understanding Human Contention and Machine Control.

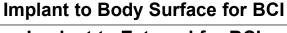
Brain-Computer-Interface(BCI) and Brain-Machine-Interface(BMI) for Clinical Support to Disability and More General Use Cases Including for Entertainment, e-Game, and Heavy Industries.


4.2 BMI with Wireless BAN with Al Machine-Learning and User-Interface



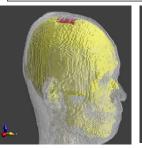


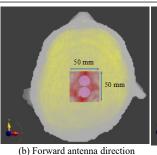


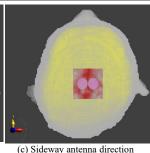

Brain-Machine-Interface(BMI) systems for Clinical Support to Disability such as autonomous robot hand control and communication assistance.

4.2 Channel models and scenarios in use case of BMI and BCI(Brain-Computer-Interface)

We will define what is BCI and BMI.


Implant to External for BCI


Specific use cases


Body surface to body surface for BCI

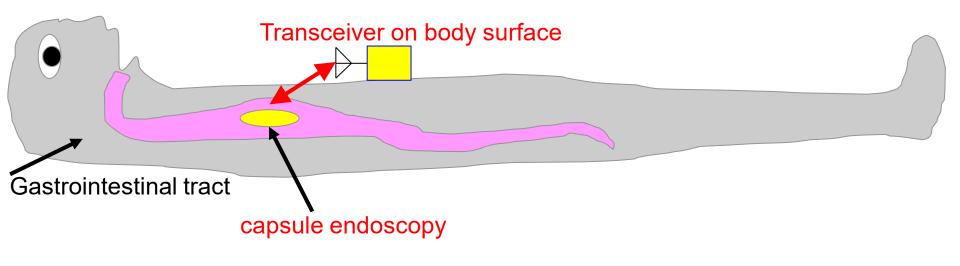
Body Surface to External for BCI

Implant to body surface for capsule endoscopy

Skin (thickness = 10 mm)

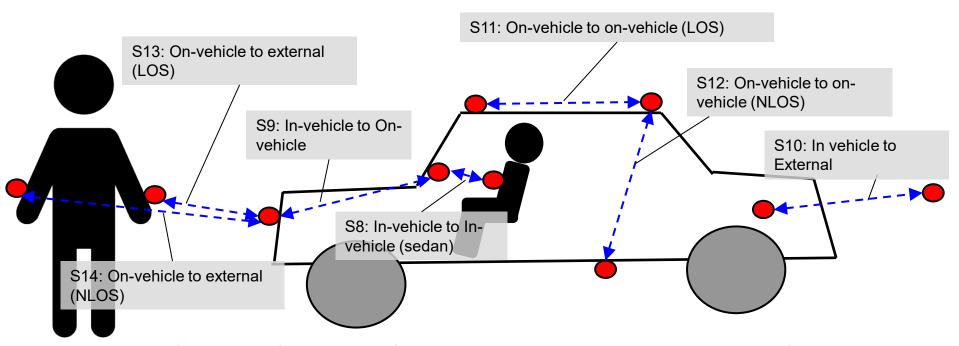
1 mm
Antenna
4 mm

Skull bone


Brain

Simulation and measured models of implant transmitters

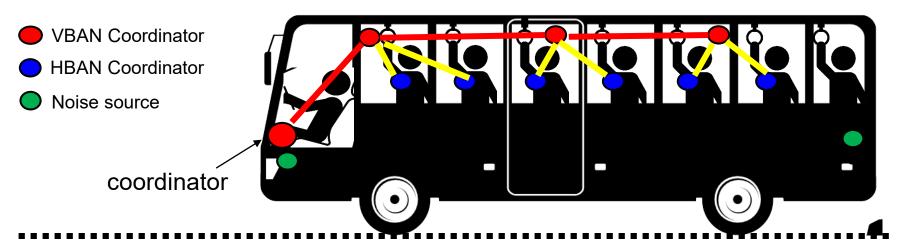
- Implant to Body Surface for BCI
- Body Surface to External on-body surface for BCI
- Implant to External for BCI


4.3 Channel models and scenarios for capsule endoscopy

Specific use cases				
Implant(head) to on-body for BCI				
Implant to External for BCI				
Body surface to body surface for BCI				
Body Surface to External for BCI				
Implant to body surface for capsule endoscopy				

Implant to Body Surface for Capsule Endoscopy

4.4 Channel and Environmental models of VBAN

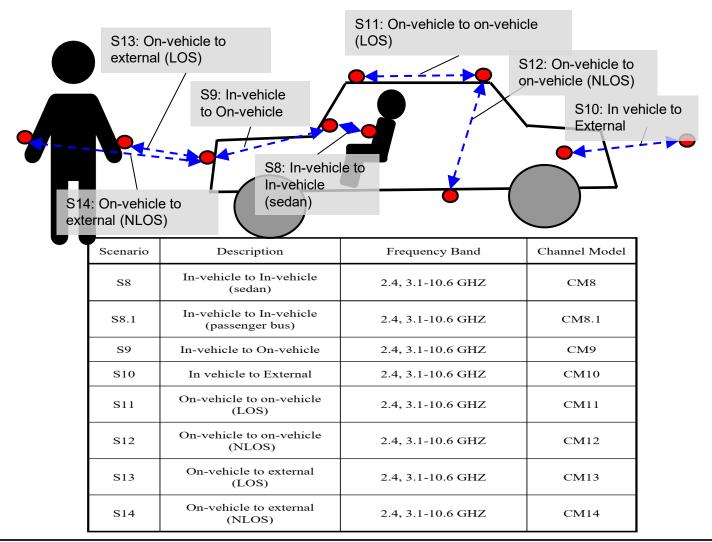

Common Standard of Dependable BAN IEEE802.15.6ma for human and car bodies makes a new market for both medical devices and automotive industries.

For instance, autonomous car safety control for elderly divers' driving failure to avoid accidents.

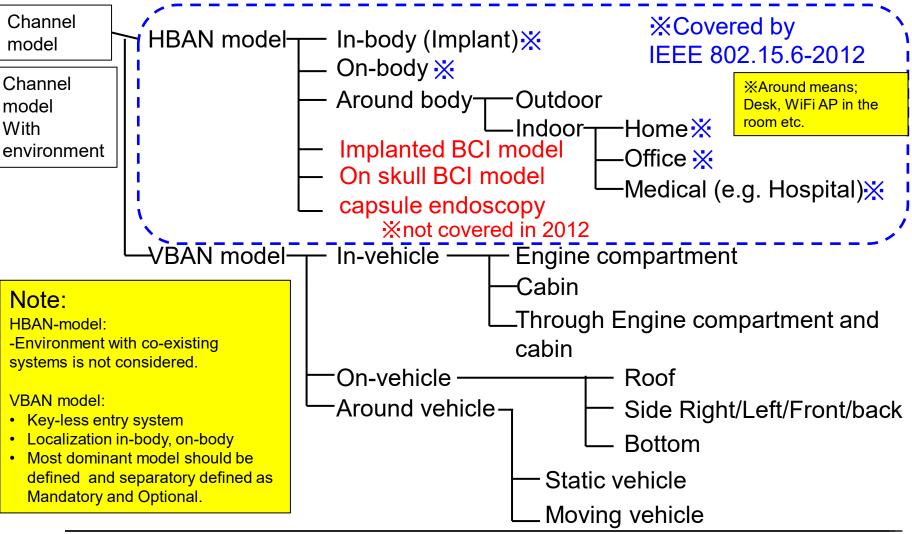
4.4 Use Case of Coexisting Multiple HBAN and VBAN

Nodes and coordinator are in cabin room Geometrical configuration

Original channel models, common channel model to IEEE 802.15.4a and IEEE802.15.6-2012

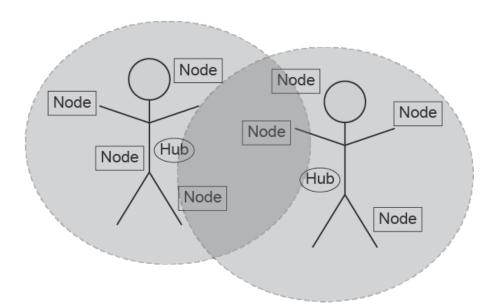

<u>Use case</u>

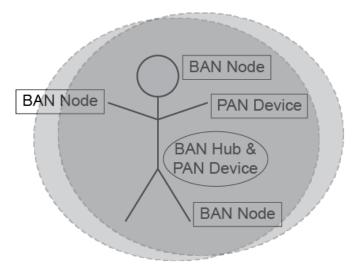
Entertainment for passengers


Nodes are in cabin room / coordinator is in cabin room.

scen ario		Sedan/RV / SUV with engine	Sedan/RV / SUV without engine	Bus	Cargo / pickup	Special purpose
8.1v v	VBAN coordinator and VBAN coordinator	Case 3.1a		Case 3.1a	Same as 3.1a	
8.1v h	VBAN coordinator and HBAN coordinator	Case 3.1b				

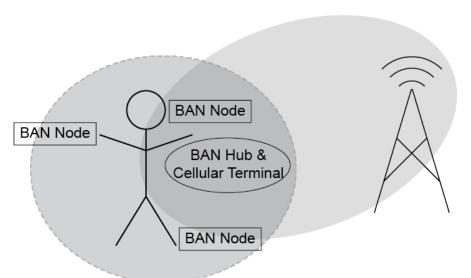
4.4 Channel models and scenarios in IEEE802.15.6ma


4.5 Classification of Channel and Environment Models for Human and Vehicle Body Area Networks (HBAN&VBAN)


5. Requirement for Revision of 15.6 MAC for Human and Vehicle BANs with Enhanced Dependability TG15.6ma

5.1 Coexisting Models; Interference among BANs and other Networks

 There would be cases where BANs or BAN and other networks are spatially collapsed.



Case 1: BANs, using same frequency bands

Case 2: BAN and PAN, using same frequency bands

5.2 Coexisting Models; Interference among BANs and other Radio Systems

Case 3: BAN and other piconets such as cellular network or Wi-Fi, some part of their frequency bands are overlapped.

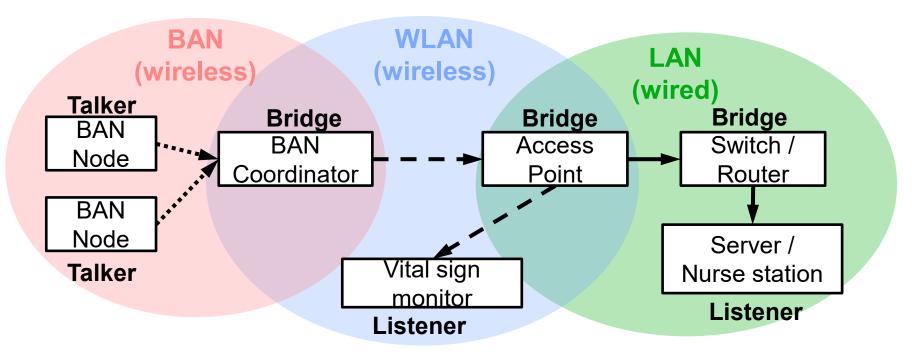
Space Exploration
Ship, Earth
Exploration
Satellite (EESS)

Radio Astronomy(RAS)

Case 4: Coexisting Passive Radio Receiver Systems such as RAS, EESS etc.

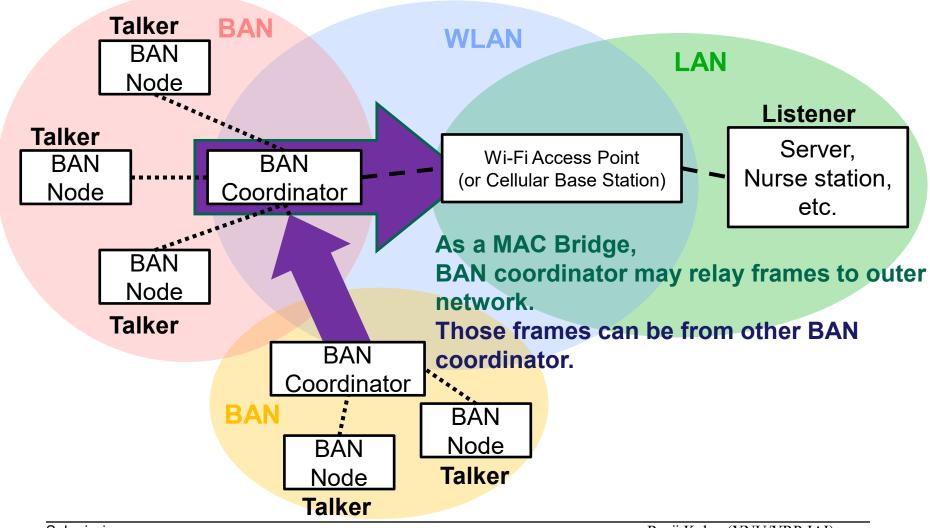
- When introducing a new radio system, R&D of technologies to avoid interference among coexisting systems is mandatory by regulation and necessary in standard.
- Particularly, cognitive sensing, measuring, modelling, and interference mitigation technologies must be a common subject among URSI commissions.

5.3 Definition of Coexistence Environment Classes

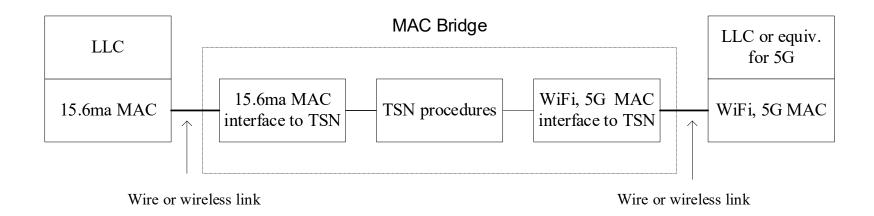

		Coe	xisting syster	n(s)			
Coexist ence Class	802.15.6ma	802.15.6- 2012	Non-UWB (ex. Wi-Fi / Unlicensed / 3GPP)	802.15 UWB (ex. 802.15.4)	Non-802.15 UWB (ex. ETSI SmartBAN)	Category	
0	-	-	-	-	-	Single BAN	
1 (1a)	✓	-	-	-	-	Multiple 15.6	
2 (1b)	✓	✓	-	-	-	BANs	
3	✓	ı	√	•	1	Non-UWB	
4 (2a)	✓	•	-	√	-	Multiple	
5 (2b)	✓	-	-	-	√	UWB	
6 (2c)	√	-	-	√	√	systems	
7	✓		√	√	√	Final Boss	

 The coexistence class has been redefied to 8 levels, which can be represented by 3 bits and would be suitable to include in PHY or MAC headers.

5.4 TSN Possibility in WBAN 15.6ma


- 802.15.6 has BAN coordinator (hub) which can perform MAC bridge which connects two separate networks as 802.1 TSN(Time Sensitive Network).
- A coordinator connects to nodes in its own network.
 - Not only same nodes operate on the same PHY, but also different PHYs.
- The revision may enable a coordinator to connect to other coordinators, to avoid interference and enhance dependability.
 - Unlike wired network, wireless network shares same medium and collision occurs which plays significant role in dependability.

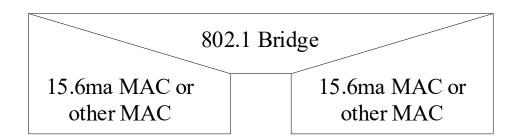
5.4 Possible bridging in 802.15.6ma



 BAN coordinator may relay frames to outer network as a MAC Bridge.

5.5 Coordinator to Coordinator Bridging

5.6 TSN equipment to infrastructure



5.7 TSN in the 15.6ma protocol stack

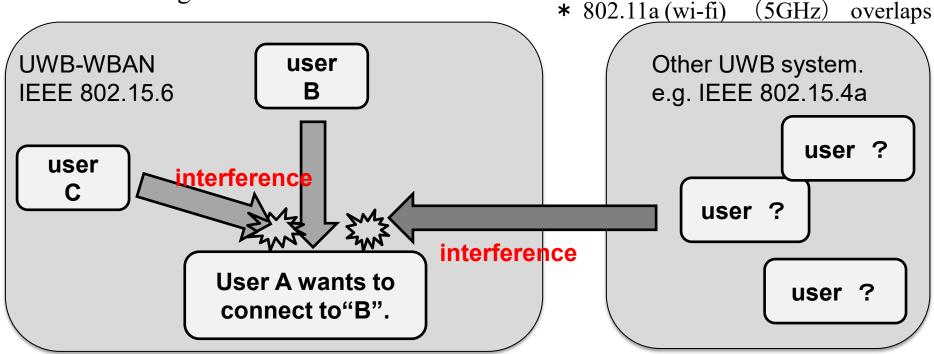
	Application	Application			
Layer 5,6,7	Payload	Payload			
Layer 4	Proprietary/Other	TCP/UDP			
Layer 3	Troprietary/Ourer	IP			
	LLC layer				
Layer 2	802.1 TSN interface				
	15.6ma MAC				
Layer 1	15.6m	a PHY			

5.7 TSN switch

15.6ma should focus on the MAC layer

Fortunately, there is no conflict with 802.1 MAC addresses.

6. Available Technologies in PHY and MAC Layers for the Focused Use Cases for Revision of std 15.6-2012 for Human and Vehicle BANs with Enhanced Dependability TG16.6ma


Submission

6.1 Intra and Inter System Interference among BAN and Other PANs

- Inter-user interference
 - IR-UWB uses the same pulse as all users signal in the same standard.
 - Other users signal and/or the other network signal would be interference.

- Inter-system interference
 - Interference from the other wreless system using overlapped frequency band. ⇒ Unknown

Ryuji Kohno(YNU/YRP-IAI)

Slide 55

6.2 Approach for Intra and Inter System Interference among BAN and Other PANs

- Sparate and Recognize each interference from different source.
 - * Apply suitable interference mitigation method according to source of interference.
- Using both of Spatial and Temporal signal processing.

Intra-system(Inter-user)

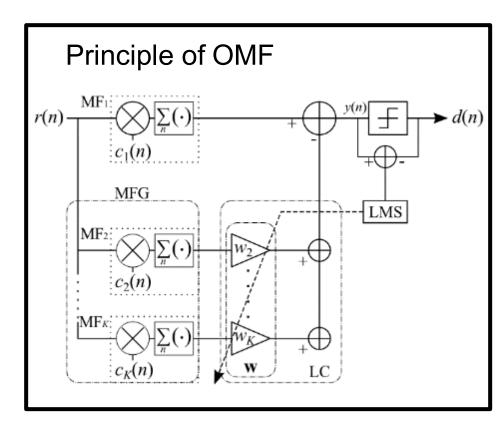
interference for Multiple BANs in the same system Interference from a system using the same pulse

Recognize and demodulate

Pulse shape multiple access Multi-user detection

Inter-system interference for coexisting deferent systems

Interference from a system using overlapped frequency



Remove

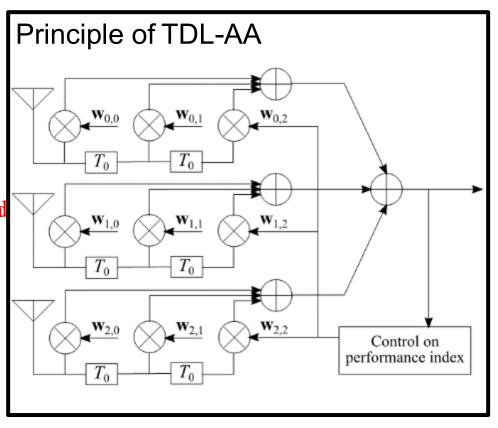
Interference canceller

6.3 Time Domain Interference Mitigation

- OMF; orthogonal matched filter
- consists a matched filter (MF₁) and MF
 Group (MFG)
- Tap coefficients of MF₁ are the same as sequence of desired signal.
- Coefficients of MF_1 and each MF_k that constituting MFG are orthogonal.
- Desired signal does not through MF_{2∼K-1} because orthogonality.
 →only interference can through.
- MFG makes replica of interference signal by lenear combination with weight vector w of linear combiner; LC.
- Subtract interference replica from the output of MF₁.

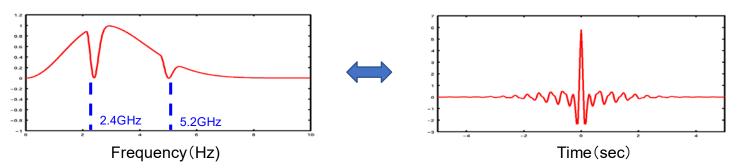
OMF can remove interference without any pre-knowledge of interference.

6.4 Space Domain Interference Mitigation

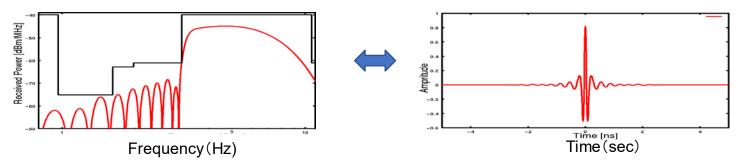

- TDL-AA; Tapped delay line array antenna
- Array antenna by using multiple antenna elements and tapped delay line.
- Each antenna branch has coefficients.
- Transfer function of this antenna has parameters of signal incoming $angle;\theta$ and frequency; ω .

 \Rightarrow h as characteristics of both of spatial and time domain.

$$\begin{split} \tau_n &= n \frac{d}{c} \sin \theta, \\ y(t) &= \exp(j\omega t) \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \exp(-j\omega(\tau_n + mT_0)) w_{n.m}, \\ &= \exp(j\omega t) \times H(\theta, \omega), \end{split}$$

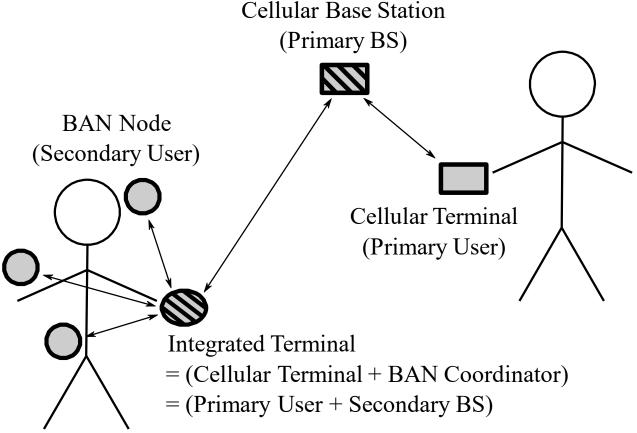

$$H(\theta,\omega) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} w_{n,m} \exp(-jm\omega T_0) \exp(-jn\omega \frac{d}{c}\sin\theta).$$

(Tapped delay line array antenna)



TDL-AA can work as interference canceller on both of time and spacedomains

6.5 Interference Mitigation among Other Radios

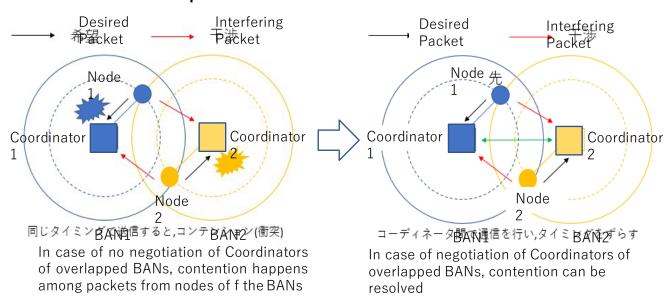

(a) Time Waveform of Pulse (right figure) and its Frequency Spectrum with notches in 2.4 and 5.2GHz for WLAN (left figure)

(b) Time Waveform of Pulse (right figure) and its Frequency Spectrum satisfying spectrum mask (left figure)

Ref. R.Kohno, H.Zhang, H.Nagasaka, "Ultra Wideband impulse radio using free-verse pulse waveform shaping, **Soft-Spectrum adaptation**, and local sine template receiving," doc.: IEEE 802.15-03/097r1, March 3, 2003.

6.6 Integrated Terminal to Avoid Mutual Interference in case of overlaid coexisting BAN and other Radios such as UWB-BAN and 4G/5G

M. Kim, T. Kobayashi, C.Sugimoto, R Kohno, "Transmission Power Control of UWB -WBAN for Avoidance of Interference to Cellular Networks Using Integrated Terminal for Both Networks," International Journal of Computer Science and Telecommunications, ISSN 2047-3338 (Online), Vol. 11, Issue 02, pp.8-15, March 2020


6.7 Contention among Overlaid BANs

Issue

- Interference problem in the case where multiple BANs overlap (specifically, situations where people with BAN approaching)
- Because the schedule adjustment between the coordinators has notbeen done

Solution

Negotiation between coordinators, scheduling between different BANs, to prevent deterioration due to inter-BAN interference

What is interference at the MAC layer Sensor nodes within the communication range try to transmit packets at the same timing, causing collisions, making it impossible to communicate correctly

Ref. R.Kohno, S.Ogawa, "MAC Protocol with Interference Mitigation Using Negotiation among Coordinators in Multiple Wireless Body Area Networks (BANs)," IEEE802.15 doc.#15-19-0119-00-0dep-ig-dep, Vancouver, Canada, March 12, 2019

6.8 QoS Levels of Packets corresponding to User Priority in IEEE802.15.6

- In Std.15.6 WBAN systems, a various data such as vital signs, skin temperature, blood pressure, ECG, EEG, ECoG, and vehicle controlling commons have different QoS levels corresponding to user priority.
- In 15.6ma for dependable WBAN for human and vehicles, data packet transmission should be dependable according to QoS levels even in various classes of coexistence environment.
- Therefore, <u>appropriate sets of error</u> <u>controlling scheme with FEC and hybrid</u> <u>ARQ</u> corresponding to QoS levels have been standardized in 15.6ma,

User priority	Traffic designation	Frame type
0	Background (BK)	Data
1	Best effort (BE)	Data
2	Excellent effort (EE)	Data
3	Video (VI)	Data
4	Voice (VO)	Data
5	Medical data or network control	Data or management
6	High-priority medical data or network control	Data or management
7	Emergency or medical implant event report	Data

Common with

User

priority

0

2

3

4

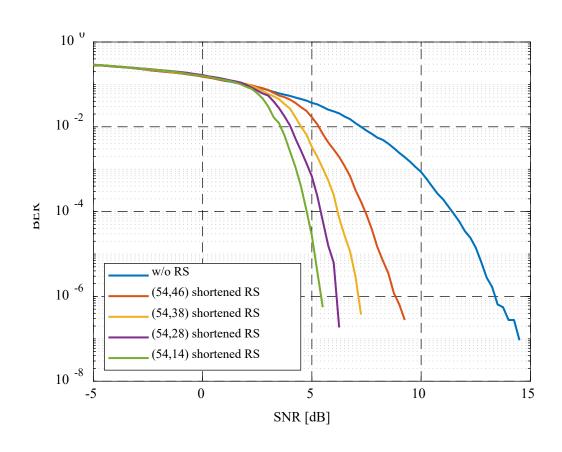
5

6

7

6.9 Channel Coding Table #1 corresponding to Qo

corresponding to QoS				
	Outer code	HARQ		
ı		-		
ı		-		
ı		-		
ı		-		
	(54, 46) shortened RS code	-		
	(54, 38) shortened RS code	-		
	(54, 28) shortened RS code	-		


(54, 14) shortened RS code

- As an outer code, shortened Reed-Solomon (RS) codes with N=54 (original code length N=63) will be selected to correct burst errors due to interference from other WBANs and the coding rates are changed according to each QoS and channel condition
- As an inner code, 15.4ab LDPC codes (K=324, 648, 972, R=1/2) will be selected for the coexistence of 15.6ma and 15.4ab
- This updated concept table is considered as the first priority

Inner code

15.4ab LDPC code (R=1/2)

Evaluation of Channel Codes Assigned Corresponding to Different QoS Priority Levels

Bit error ratio of (54,46), (54,38), (54,28), (54,14) shortened RS codes and no encoding were evaluated under an AWGN channel and BPSK modulation

Performances were improved as the coding rate decreased

LDPC simulator is currently checked and will be combined with the RS simulator

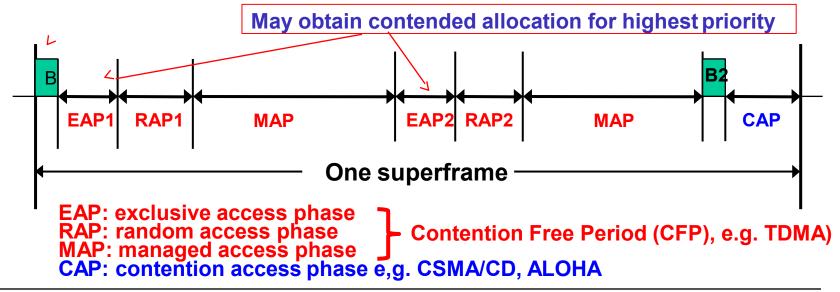
doc.: IEEE 802.15-23-0455-00-06ma

Error-correcting codes corresponding to QoS levels

6.9 Channel Coding Table #2

Common with IEEE802.15.4ab

User priority	Inner code	Outer code	HARQ
0	-	15.4ab LDPC code (R=1/2)	-
1	-	15.4ab LDPC code (R=1/2)	-
2	-	15.4ab LDPC code (R=1/2)	-
3	-	15.4ab LDPC code (R=1/2)	-
4	15.4a/z based convolutional code, R=4/5	15.4ab LDPC code (R=1/2)	0
5	15.4a/z based convolutional code, R=2/3	15.4ab LDPC code (R=1/2)	0
6	15.4a/z convolutional code, R=1/2	15.4ab LDPC code (R=1/2)	0
7	15.4a/z based convolutional code, R=1/4	15.4ab LDPC code (R=1/2)	0


- As an outer code, 15.4ab LDPC (K=324, 648, 972, R=1/2) codes will be selected for the coexistence of 15.6ma and 15.4ab
- As an inner code, 15.4a/z based convolutional codes (which are almost the same of our proposed decomposable codes) will be selected, and the coding rates are changed according to each QoS and channel condition, which can be applied to hybrid ARQ
- This table is considered as the second choice

6.10 Specification of Error-Control Defined Corresponding Combination of 8 QoS Levels and 8 Coexistence Classes

Coexiste nce Class	0	1	2	3	4	5	6	7
QoS								
Level								
0	ВСС	BCC+E	BCC+E	BCC+E			HARQ	HARQ
1	ВСС	BCC+E	BCC+E	BCC+E			HARQ	HARQ
2	всс	BCC+E	BCC+E	BCC+E			HARQ	HARQ
3	ВСС	BCC+E	BCC+E	BCC+E			HARQ	HARQ
4	ВСС	BCC+E	BCC+E	BCC+E			HARQ	HARQ
5	всс	BCC+E	BCC+E	BCC+E			HARQ/IM	HARQ/IM
6	CFP/HARQ	CFP/HARQ	CFP/HARQ	CFP/HARQ	CFP/HARQ	CFP/HARQ	HARQ/IM	HARQ/IM
7	CFP/HARQ	CFP/HARQ	CFP/HARQ	CFP/HARQ	CFP/HARQ	CFP/HARQ	HARQ/IM	HARQ/IM

6.11 Dependable MAC for IEEE802.15.6ma

To enhance dependability in MAC layer, IEEE802.15.6
has applied a hybrid contention free and contention
access MAC protocol in which high QoS level of
packets have transmit without delay in contention free
period (CFP) while low QoS level of packets with
permissible delay in contention access period (CAP).

7. Timeline of TG15.6ma

TG 6ma Timeline

Doc(TRD) July 2022	proposals Nov2022 Jan.2023	V0 May 2023	Sept 2023	Jan. 2024	May 2024	June 2024
Tech Req	Presentat ion of	Std Draft	WG pre- ballot	WG letter ballot (LB)	SB recircu lation	Revcom Submissi on

TRD,CMD
Call
Proposals
Sept
2022

Harmoni zation of **Proposals** Mar

2023

Finish integration of technical proposals. Draft v1 **July2023**

Comme nts and resoluti on for preballot. Nov 2023

EC approv al to SB, SB submis sion Mar 2024

SB Revco recircul m ation if Appro required ve Jun Jul 2024 2024

Notes: SASB/RevCom scheduled for 2024 a guess

Timeline details.

Topic	Deadline	Notes
Technical Requirements Document (TRD). Channel Model Document (CMD). Call for Proposals.	Sept. 2022	TRD describes the technical requirements baseline for the evaluation of proposals. The CMD contains the channel models for different use cases targeted by the Std. Announcement of call for proposals.
Due day for proposals	March 10 th , 2023	Postponed from January 2023
Presentation of proposals	Nov. 2022, January, March 2023	Start of discussions for harmonization of proposals.
Harmonization of Proposals	March 2023	Agreements on key technologies.
Std Draft v.0	May 2023	Mostly editorial revisions and start integrating text of agreed proposals.
Std Draft v. 1	July 2023	Finish integration of technical proposals.
Std Draft v. 1 recirculation	August 2023	TG approval
WG pre-ballot	September 2023	WG pre-ballot submission.
Comments and resolution for pre-ballot.	November 2023	Finish resolutions to pre-ballot comments and recirculation.
WG letter ballot (LB)	January 2024	LB submission
LB recirculation	January 2024	Comment-resolutions to LB recirculation
Conditional approval for Sponsor Ballot (SB)	January 2024	Seek conditional approval
Final LB recirculation. EC approval	March 2024	Just before the March meeting.
EC approval to SB	March 2024	
SB submission	March 2024	
SB recirculation	May 2024	Resolutions to SB.
Conditional/unconditional approval to RevCom	May 2024	Submission to SASB agenda
SB recirculation if required	June 2024	
RevCom submission Note: the deadlines are subject to	June 2024	RevCom approval

Note: the deadlines are subject to change.

8. Concluding Remark

- Corresponding request from ETSI smart BAN and smart M2M, IG-DEP and its successive SG15.6a have discussed to focus on internal car network for IoT/M2M connections that is focused on BAN for human and car bodies.
- As a revision of IEEE802.15.6, MAC for multiple BANs can be guaranteed to satisfy permissible delay or back-off time and throughput of high QoS packets for human and vehicle BANs while maintaining average performance.
- As a revision of IEEE802.15.6, PHY for UWB radios should be revised for updated UWB regulation. In particular, coexistence among different UWB radios of IEEE802.15 such as 15.4a, 4f, 4z, 4ab can be supported. For instance, during CCA, types or features of these UWB radios can be analyzed to control access of packets from each radio.
- To include new use cases with enhanced dependability such as the 2nd Generation of ECoG for Brain-Machine-Interface(BMI), technical requirement has been updated to cover higher data rate and more units of ECoG sensors.
- We focus on a revision of IEEE802.15.6 for enhanced dependability in PHY and MAC, established and will complete the revision IEEE802.15.6ma. About an year later. If you have any question and comment, you are welcome to discussion in TG15.6ma and send content contributions to Ryuji Kohno kohno@ynu.ac.jp>

Contacts and Conference call

- 1. Chair; Ryuji Kohno, YNU/YRP-IAI kohno@ynu.ac.jp, kohno@yrp-iai.jp
- 2. 1st Vice-Chair; Marco Hernandez, YRP-IAI/CWC marco.hernandez@ieee.org
 - 2nd Vice-Chair; Daisuke Anzai, NIT anzai@nitech.ac.jp
- 3. Secretary; Takumi Kobayashi, YNU/TCU kobayashi-takumi@yrp-iai.jp, kobayashi@nitech.ac.jp
- 4. Technical Editors;

Minsoo Kim, YRP-IAI minsoo@minsookim.com

Seong-Soon Joo, KPST wowbk@kpst.co.kr

Kento Takabayashi, Toyo U. takabayashi.kento.xp@gmail.com

Marco Hernandez, YRP-IAI/CWC marco.hernandez@ieee.org

Thank You!

Any Questions ?