Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: 64QAM extension to SUN-OFDM

Date Submitted: July 10, 2023

Source: Henk de Ruijter and Emmanuel Gautier, Silicon Labs

Address: 400 W Cesar Chavez St, Austin, TX 78701

Abstract: Overview of proposed resolutions

Purpose: Discussion

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Introduction:

- Trend: increasing traffic in SUN
 - Increased data rates are desirable
- Extending SUN-OFDM:
 - 64-QAM, code rate $\frac{3}{4}$
Proposing to add 64QAM with code rate $\frac{3}{4}$:

Table 20-10—Data rates for SUN OFDM PHY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OFDM Option 1</th>
<th>OFDM Option 2</th>
<th>OFDM Option 3</th>
<th>OFDM Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal bandwidth (kHz)</td>
<td>1094</td>
<td>552</td>
<td>281</td>
<td>156</td>
</tr>
<tr>
<td>Channel spacing (kHz)</td>
<td>1200</td>
<td>800</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>DFT size</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Active tones</td>
<td>104</td>
<td>52</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td># Pilot tones</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td># Data tones</td>
<td>96</td>
<td>48</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>MCS0 (kb/s) (BPSK rate 1/2 with 4x frequency repetition)</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>MCS1 (kb/s) (BPSK rate 1/2 with 2x frequency repetition)</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>MCS2 (kb/s) (QPSK rate 1/2 and 2x frequency repetition)</td>
<td>400</td>
<td>200</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MCS3 (kb/s) (QPSK rate 1/2)</td>
<td>800</td>
<td>400</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>MCS4 (kb/s) (QPSK rate 3/4)</td>
<td>1200</td>
<td>600</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>MCS5 (kb/s) (16-QAM rate 1/2)</td>
<td>1600</td>
<td>800</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>MCS6 (kb/s) (16-QAM rate 3/4)</td>
<td>2400</td>
<td>1200</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>MCS7 (kb/s) (64-QAM rate $\frac{3}{4}$)</td>
<td>3600</td>
<td>1800</td>
<td>900</td>
<td>450</td>
</tr>
</tbody>
</table>
64-QAM Gray mapping (same as in 802.11a):
64-QAM → using same interleaving rules:

\[
i = \left(\frac{N_{cbps}}{N_{row}} \right) \times \left[k \mod(N_{row}) \right] + \text{floor}\left(\frac{k}{N_{row}} \right)
\]

\[
j = s \times \text{floor}\left(\frac{i}{s} \right) + \left[i + N_{cbps} - \text{floor}\left(\frac{N_{row} \times i}{N_{cbps}} \right) \right] \mod(s)
\]

- **\(N_{row} = 12\)**
 - Same as SUN OFDM PHY when no spreading is used
- **\(N_{cbps} = \) Number of data carriers X 6 bits**
 - Option 1 → \(N_{cbps} = 576\)
 - Option 2 → \(N_{cbps} = 288\)
 - Option 3 → \(N_{cbps} = 144\)
 - Option 4 → \(N_{cbps} = 72\)
Conclusion:

• 64-QAM with code rate $\frac{3}{4}$ is proposed
 • 50% rate boost
 • Up to 3.6 Mbit/s using Option 1
 • Higher data rates in bandwidth limited regulatory domains
 • 450 kbps in 200 kHz ch-spacing, e.g. EU, India
 • 1800 kbps in 800 kHz ch-spacing, e.g. JP