IEEE Standard for
Air Interface for Broadband Wireless Access Systems-

Amendment t: Fixed and Mobile Wireless Access in Narrowband Channels

Sponsor
LAN/MAN Standards Committee
of the
IEEE Computer Society
and the
IEEE Microwave Theory and Techniques Society

Approved 1 April 2345
IEEE-SA Standards Board
Abstract: This standard specifies the air interface, including the medium access control layer (MAC) and physical layer (PHY), of combined fixed and mobile point-to-multipoint broadband wireless access (BWA) systems providing multiple services. The MAC is structured to support multiple PHY specifications, including WirelessMAN-SC, WirelessMAN-OFDM, and WirelessMAN-OFDMA PHY specifications, each suited to a particular operational environment.

Keywords: broadband wireless access, BWA, cellular layer, fixed broadband wireless access, IEEE 802.16™, IMT-2000, MAN, management information base, MIB, microwave, mobile broadband, mobile broadband wireless access, OFDM, OFDMA, radio, standard, WAS, wireless access systems, WirelessMAN®, wireless metropolitan area network

Grateful acknowledgment is made to Cable Television Laboratories for the permission to use the following source material:

Radio Frequency Interface Specification (version 1.1), part of Data-Over-Cable Service Interface Specifications, © Copyright 1999, Cable Television Laboratories.

Baseline Privacy Plus Interface Specification, © Copyright 1999, Cable Television Laboratories.
Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed through scientific, academic, and industry-based technical working groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.
Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Xplore at http://ieeexplore.ieee.org or contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.
Participants

This standard was developed by the IEEE 802.15.16t Working Group on Broadband Wireless Access, which develops the WirelessMAN® Standard for Wireless Metropolitan Area Networks.

IEEE 802.15.16t Working Group Officers

Tim Godfrey, Chair
Harry Bims, Vice Chair, Technical Editor

The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which this standard was prepared and finalized for IEEE Ballot:

Harry Bims
Tim Godfrey

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

Thomas Alexander
Lai King Anna Tee
Mathilde Benveniste
Harry Bims
Nancy Bravin
Demetrios Bucaneg
William Byrd
Juan Carreon
Charles Cook
Sourav Dutta
Robert Finch
Avraham Freedman
Tim Godfrey
Eric W. Gray
Randall Groves
Michael Gundlach
Marco Hernandez
Werner Hoelzl
Noriyuki Ikeuchi
Sergiu Iordanescu
Akio Iso
Atsushi Ito
Raj Jain
Piotr Karocki
Stuart Kerr
Brian Kiernan
Yongbum Kim
Yasushi Kudoh
Thomas Kurihara
Hyeong Ho Lee
Arthur H. Light
Elvis Maculuba
Roger B. Marks
Jeffery Masters
Michael McInnis

When the IEEE-SA Standards Board approved this standard on 6 December 2017, it had the following membership:

Jean-Philippe Faure, Chair
Gary Hoffman, Vice Chair
John D. Kulick, Past Chair
Konstantinos Karachalios, Secretary

Chuck Adams
Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Doug Edwards
J. Travis Griffith
Michael Janezic
Thomas Kochy
Joseph L. Koepfinger*
Kevin Lu
Daleep Mohla
Damir Novosel
Ronald C. Petersen
Annette D. Reilly

Robby Robson
Dorothy Stanley
Adrian Stephens
Mehmet Ulema
Phil Wennblom
Howard Wolfman
Yu Yuan

*Member Emeritus
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which the draft of IEEE Std 802.16-2001 was approved:

<table>
<thead>
<tr>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Song An</td>
</tr>
<tr>
<td>Jori Arrakoski</td>
</tr>
<tr>
<td>Arun Arunachalam</td>
</tr>
<tr>
<td>Eli Avivi</td>
</tr>
<tr>
<td>C. R. Baugh</td>
</tr>
<tr>
<td>Carlos Belfiore</td>
</tr>
<tr>
<td>Anader Benyamin-Seeyar</td>
</tr>
<tr>
<td>Carl Bushue</td>
</tr>
<tr>
<td>Baruch Buskila</td>
</tr>
<tr>
<td>Dean Chang</td>
</tr>
<tr>
<td>Naftali Chayat</td>
</tr>
<tr>
<td>Rémi Chayer</td>
</tr>
<tr>
<td>Mary Condie</td>
</tr>
<tr>
<td>José Costa</td>
</tr>
<tr>
<td>Bruce Curriavan</td>
</tr>
<tr>
<td>Amos Dotan</td>
</tr>
<tr>
<td>Keith Doucet</td>
</tr>
<tr>
<td>Roger Durand</td>
</tr>
<tr>
<td>Brian Eidson</td>
</tr>
<tr>
<td>Carl Eklund</td>
</tr>
<tr>
<td>David Falconer</td>
</tr>
<tr>
<td>George Fishel</td>
</tr>
<tr>
<td>Adrian Florea</td>
</tr>
<tr>
<td>Jeff Foerster</td>
</tr>
<tr>
<td>Robert Foster</td>
</tr>
<tr>
<td>Avi Freedman</td>
</tr>
<tr>
<td>G. Jack Garrison</td>
</tr>
<tr>
<td>Conrad Grell</td>
</tr>
<tr>
<td>Phil Guillemette</td>
</tr>
<tr>
<td>Zion Hadad</td>
</tr>
<tr>
<td>Baruch Halachmi</td>
</tr>
<tr>
<td>Michael Hamilton</td>
</tr>
<tr>
<td>Baya Hatim</td>
</tr>
<tr>
<td>Srinath Hosur</td>
</tr>
<tr>
<td>Coleman Hum</td>
</tr>
<tr>
<td>Wayne Hunter</td>
</tr>
<tr>
<td>Eric Jacobsen</td>
</tr>
<tr>
<td>Hamadi Jamali</td>
</tr>
<tr>
<td>Jacob Jorgensen</td>
</tr>
<tr>
<td>Mika Kasslin</td>
</tr>
<tr>
<td>Brian Kiernan</td>
</tr>
<tr>
<td>John Kim</td>
</tr>
<tr>
<td>Itzik Kitroser</td>
</tr>
<tr>
<td>Allan Klein</td>
</tr>
<tr>
<td>Jay Klein</td>
</tr>
<tr>
<td>Demosthenes Kostas</td>
</tr>
<tr>
<td>Yigal Leiba</td>
</tr>
<tr>
<td>Barry Lewis</td>
</tr>
<tr>
<td>Sergio Licardie</td>
</tr>
<tr>
<td>John Liebetreu</td>
</tr>
<tr>
<td>Lars Lindh</td>
</tr>
<tr>
<td>Willie Lu</td>
</tr>
<tr>
<td>Fred Lucas</td>
</tr>
<tr>
<td>J. Scott Marin</td>
</tr>
<tr>
<td>Roger B. Marks</td>
</tr>
<tr>
<td>Andy McGregor</td>
</tr>
<tr>
<td>Ronald Meyer</td>
</tr>
<tr>
<td>Andrew Middleton</td>
</tr>
<tr>
<td>Apurva Mody</td>
</tr>
<tr>
<td>Jim Mollenauer</td>
</tr>
<tr>
<td>William Myers</td>
</tr>
<tr>
<td>Lou Olsen</td>
</tr>
<tr>
<td>Yunsang Park</td>
</tr>
<tr>
<td>Brian Petry</td>
</tr>
<tr>
<td>Wayne Pleasant</td>
</tr>
<tr>
<td>Moshe Ran</td>
</tr>
<tr>
<td>Stanley Reible</td>
</tr>
<tr>
<td>Valentine Rhodes</td>
</tr>
<tr>
<td>David Ribner</td>
</tr>
<tr>
<td>Gene Robinson</td>
</tr>
<tr>
<td>Walt Roehr</td>
</tr>
<tr>
<td>Durga Satapathy</td>
</tr>
<tr>
<td>Glen Sater</td>
</tr>
<tr>
<td>Vito Scaringi</td>
</tr>
<tr>
<td>Randall Schwartz</td>
</tr>
<tr>
<td>Menashe Shahar</td>
</tr>
<tr>
<td>Chet Shirali</td>
</tr>
<tr>
<td>George Stamatelos</td>
</tr>
<tr>
<td>Karl Stambaugh</td>
</tr>
<tr>
<td>Kenneth Stanwood</td>
</tr>
<tr>
<td>Michael Stewart</td>
</tr>
<tr>
<td>Paul Thompson</td>
</tr>
<tr>
<td>Nico van Waes</td>
</tr>
<tr>
<td>Subir Varma</td>
</tr>
<tr>
<td>Chao-Chun Wang</td>
</tr>
<tr>
<td>Bob Ward</td>
</tr>
<tr>
<td>Philip Whitehead</td>
</tr>
<tr>
<td>David G. Williams</td>
</tr>
<tr>
<td>Vladimir Yanover</td>
</tr>
<tr>
<td>Huanchun Ye</td>
</tr>
<tr>
<td>Chaoming Zeng</td>
</tr>
<tr>
<td>Juan Carlos Zúñiga</td>
</tr>
</tbody>
</table>
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which the draft of IEEE Std 802.16c-2002 was prepared and finalized for IEEE Ballot:

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Member Name</th>
<th>Member Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aditya Agrawal</td>
<td>Wayne Hunter</td>
<td>Manish Patel</td>
</tr>
<tr>
<td>Song An</td>
<td>David Husson</td>
<td>Kenneth Peirce</td>
</tr>
<tr>
<td>Gordon Antonello</td>
<td>Hamadi Jamali</td>
<td>Subbu Ponnuswamy</td>
</tr>
<tr>
<td>Reza Arefi</td>
<td>Jacob Jorgensen</td>
<td>Moshe Ran</td>
</tr>
<tr>
<td>S. Lek Ariyavisitakul</td>
<td>Tal Kaitz</td>
<td>Gene Robinson</td>
</tr>
<tr>
<td>Jori Arrakoski</td>
<td>Mika Kasslin</td>
<td>Shane Rogers</td>
</tr>
<tr>
<td>Malik Audeh</td>
<td>Phil Kelly</td>
<td>Amir Sarajedini</td>
</tr>
<tr>
<td>Eli Avivi</td>
<td>Ofer Kelman</td>
<td>Octavian Sarca</td>
</tr>
<tr>
<td>Yvon Belec</td>
<td>Brian Kiernan</td>
<td>Durga Satapathy</td>
</tr>
<tr>
<td>Anader Benyamin-Seeyar</td>
<td>Itzik Kitroser</td>
<td>Youssi Segal</td>
</tr>
<tr>
<td>Carl Bushue</td>
<td>Thomas Kolze</td>
<td>Radu Selea</td>
</tr>
<tr>
<td>Baruch Buskila</td>
<td>Jerome Krinock</td>
<td>James Simkins</td>
</tr>
<tr>
<td>Yuankai Chang</td>
<td>Jonathan Labs</td>
<td>Manoneet Singh</td>
</tr>
<tr>
<td>Dean Chang</td>
<td>John Langley</td>
<td>Sean Sonander</td>
</tr>
<tr>
<td>David Chauncey</td>
<td>Yigal Leiba</td>
<td>Kenneth Stanwood</td>
</tr>
<tr>
<td>Naftali Chayat</td>
<td>Moshe Levinson</td>
<td>Michael Stewart</td>
</tr>
<tr>
<td>Rémi Chayer</td>
<td>Xiaodong (Alex) Li</td>
<td>Paul F. Struhsaker</td>
</tr>
<tr>
<td>Brian Edmonston</td>
<td>John Liebetreu</td>
<td>Jose Tellado</td>
</tr>
<tr>
<td>Brian Eidson</td>
<td>Heinz Lycklama</td>
<td>Nico van Waes</td>
</tr>
<tr>
<td>Henry Eilts</td>
<td>Roger B. Marks</td>
<td>Subir Varma</td>
</tr>
<tr>
<td>Carl Eklund</td>
<td>Russell McKown</td>
<td>Arthur Wang</td>
</tr>
<tr>
<td>Avraham Freedman</td>
<td>Ronald Meyer</td>
<td>Lei Wang</td>
</tr>
<tr>
<td>Andrew Garrett</td>
<td>Andrew Middleton</td>
<td>Stanley Wang</td>
</tr>
<tr>
<td>G. Jack Garrison</td>
<td>Apurva Middleton</td>
<td>Philip Whitehead</td>
</tr>
<tr>
<td>Marianna Goldhammer</td>
<td>Ronald Murias</td>
<td>Curt Wise</td>
</tr>
<tr>
<td>Zion Hadad</td>
<td>Robert Nelson</td>
<td>Vladimir Yanover</td>
</tr>
<tr>
<td>Yoav Hebron</td>
<td>Kim Olszewski</td>
<td>Heejung Yu</td>
</tr>
</tbody>
</table>
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which the draft of IEEE Std 802.16a-2003 was prepared and finalized for IEEE Ballot:

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aditya Agrawal</td>
<td>Jacob Jorgensen</td>
<td>Stanley Reible</td>
</tr>
<tr>
<td>Song An</td>
<td>Tal Kaitz</td>
<td>Gene Robinson</td>
</tr>
<tr>
<td>Gordon Antonello</td>
<td>Mika Kasslin</td>
<td>Shane Rogers</td>
</tr>
<tr>
<td>Reza Arefi</td>
<td>Phil Kelly</td>
<td>Amir Sarajedini</td>
</tr>
<tr>
<td>S. Lek Ariyavisitakul</td>
<td>Ofer Kelman</td>
<td>Octavian Sarca</td>
</tr>
<tr>
<td>Jori Arrakoski</td>
<td>Brian Kieman</td>
<td>Durga Satapathy</td>
</tr>
<tr>
<td>Malik Audeh</td>
<td>Itzik Kitroser</td>
<td>Carl Scarpa</td>
</tr>
<tr>
<td>Eli Avivi</td>
<td>Thomas Kolze</td>
<td>Randall Schwartz</td>
</tr>
<tr>
<td>Yvon Belec</td>
<td>Jerome Krinock</td>
<td>Yossi Segal</td>
</tr>
<tr>
<td>Anader Benyamin-Seeyar</td>
<td>Rajeev Krishnamoorthy</td>
<td>Radu Selea</td>
</tr>
<tr>
<td>Carl Bushue</td>
<td>Jonathan Labs</td>
<td>Olivier Seller</td>
</tr>
<tr>
<td>Baruch Buskila</td>
<td>John Langley</td>
<td>James Simkins</td>
</tr>
<tr>
<td>Dean Chang</td>
<td>Yigal Leiba</td>
<td>Manoneet Singh</td>
</tr>
<tr>
<td>Yuankai Chang</td>
<td>Moshe Levinson</td>
<td>Sean Sonander</td>
</tr>
<tr>
<td>David Chauncey</td>
<td>Lingjie Li</td>
<td>Kenneth Stanwood</td>
</tr>
<tr>
<td>Naftali Chayat</td>
<td>Xiaodong (Alex) Li</td>
<td>Michael Stewart</td>
</tr>
<tr>
<td>Rémi Chayer</td>
<td>John Liebetreu</td>
<td>Paul F. Struhsaker</td>
</tr>
<tr>
<td>Brian Edmondston</td>
<td>Lars Lindh</td>
<td>John Sydor</td>
</tr>
<tr>
<td>Brian Eidson</td>
<td>Hui-Ling Lou</td>
<td>Shawn Taylor</td>
</tr>
<tr>
<td>Henry Eilts</td>
<td>Heinz Lycklama</td>
<td>David Trinkwon</td>
</tr>
<tr>
<td>Carl Eklund</td>
<td>Roger B. Marks</td>
<td>Nico van Waes</td>
</tr>
<tr>
<td>Avraham Freedman</td>
<td>Russell McKown</td>
<td>Subir Varma</td>
</tr>
<tr>
<td>Andrew Garrett</td>
<td>Ronald Meyer</td>
<td>Arthur Wang</td>
</tr>
<tr>
<td>G. Jack Garrison</td>
<td>Andrew Middleton</td>
<td>Lei Wang</td>
</tr>
<tr>
<td>Brian Gieschen</td>
<td>Apurva Mody</td>
<td>Stanley Wang</td>
</tr>
<tr>
<td>Marianna Goldhammer</td>
<td>Ronald Murias</td>
<td>Philip Whitehead</td>
</tr>
<tr>
<td>Zion Hadad</td>
<td>Robert Nelson</td>
<td>Curt Wise</td>
</tr>
<tr>
<td>Yoav Hebron</td>
<td>Kim Olszewski</td>
<td>Vladimir Yanover</td>
</tr>
<tr>
<td>Wayne Hunter</td>
<td>Mike Paff</td>
<td>Huanchun Ye</td>
</tr>
<tr>
<td>David Husson</td>
<td>Manish Patel</td>
<td>Heejung Yu</td>
</tr>
<tr>
<td>Hamadi Jamali</td>
<td>Kenneth Peirce</td>
<td>Wenhan Zhang</td>
</tr>
<tr>
<td></td>
<td>Subbu Ponnapswamy</td>
<td></td>
</tr>
</tbody>
</table>
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which the draft of IEEE Std 802.16-2004 was prepared and finalized for IEEE Ballot:

Aditya Agrawal
Gordon Antonello
Reza Arefi
Eli Avivi
Dean Chang
Naftali Chayat
Rémi Chayer
Brian Eidson
Carl Eklund
Marc Engels
Avraham Freedman
G. Jack Garrison
Marianna Goldhammer
Zion Hadad
David Johnston
Panyuh Joo
Tal Kaitz
Phil Kelly
Ofer Kelman
Brian Kiernan
Itzik Kitroser
Changhoi Koo
Jonathan Labs
Yigal Leiba
Barry Lewis
Lingjie Li
John Liebetreu
Lars Lindh
Hui-Ling Lou
Heinz Lycklama
Roger B. Marks
Russell McKown
Andrew Middleton
Phil Kelly
Ofer Kelman
Brian Kiernan
Itzik Kitroser
Changhoi Koo
Jonathan Labs
Yigal Leiba
Barry Lewis
Lingjie Li
John Liebetreu
Lars Lindh
Hui-Ling Lou
Heinz Lycklama
Roger B. Marks
Russell McKown
Andrew Middleton
Ronald Murias
Robert Nelson
Kamlesh Rath
Gene Robinson
Yossi Segal
Radu Selea
James Simkins
Kenneth Stanwood
Carl Stevenson
Shawn Taylor
Rainer Ullmann
Nico van Waes
Eyal Verbin
Arthur Wang
Lei Wang
Stanley Wang
Vladimir Yanover
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16f-2005 was prepared and finalized for IEEE Ballot:

Edward Agis
Aditya Agrawal
Baraa Al-Dabagh
Mario Aliotta
Dov Andelman
Gordon Antonello
Sanjeev Athalye
Eli Avivi
Raja Banerjea
Phillip Barber
Kevin Baum
Izhar Bentov
Rajesh Bhalla
Sean Cai
David Castelow
Giulio Cavalli
Dean Chang
Jae Hwan Chang
Yong Chang
Naftali Chayat
Rémi Chayer
Aik Chindapol
Jaeweon Cho
Hyoung-Jin Choi
Joey Chou
Jin Yong Chung
José Costa
Mark Cudak
Frank Draper
John Dring
Lester Eastwood
Brian Eidson
Carl Eklund
Yigal Eliaspur
Roger Eline
Oren ElKayam
Mo-Han Fong
Bogdan Franovici
Avraham Freedman
Mariana Goldhamer
Reza Golshan
Qiang Guo
Zion Hadad
Yung Hahn
Jun Han
John Haskin
Prakash Iyer
Moo Ryong Jeong
Brian Johnson
Panyuh Joo
Tal Kaitz
Olfer Kelman
Adam Kerr
Brian Kiernan
Jeonghwi Kim
Jung Won Kim
Yong Bum Kim
YoungKyun Kim
Itzik Kitroser
Changhoo Koo
Lalit Kotecha
Margaret LaBrecque
Jonathan Labs
Jules Pierre Lamoureux
Chang-jae Lee
Jae Hak Lee
Seong Choon Lee
Yigal Leiba
Barry Lewis
Xiaodong Li
John Liebetreu
Hyoungsoo Lim
Titus Lo
Hui-Ling Lou
Heinz Lycklama
Michael Lynch
Martin Lysčko
Seung Joo Maeng
David Maez
Jeffrey Mandin
Kevin Mankin
Roger B. Marks
Russell McKown
Scott Migaldi
James Mollenauer
Dong-II (Stephan) Moon
Ronald Murias
Robert Nelson
Gunnar Nitsche
Paul Odlzyko
Shlomo Ovadia
Pyung-Su Park
Trevor Pearman
Greg Phillips
Jose Puthenkulam
Kamlesh Rath
Maximilian Riegel
Chris Rogers
Kiseon Ryu
Andrew Sago
Atul Salvekar
Randall Schwartz
Yossi Segal
Radu Selea
Mohammad Shakouri
N.K. Shankaranarayanan
Eli Shasha
James Simkins
Jung Je Son
Yeong Moon Son
Kenneth Stanwood
Shawn Taylor
Wen Tong
Rainer Ullmann
Mano Vafai
Eyal Verbin
Frederick Vook
Arthur Wang
Irving Wang
Lei Wang
Stanley Wang
Alfred Wieczorek
Hassan Yaghoobi
Vladimir Yanover
Chulsik Yoon
Chang Wahn Yu
Peiying Zhu
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16e-2005 was prepared and finalized for IEEE Ballot:

Aditya Agrawal Tal Kaitz Greg Phillips
Baraa Al-Dabagh Ofer Kelman Kamlesh Rath
Mario Aliotta Brian Kiernan Gene Robinson
Eli Avivi Itzik Kitroser Randall Schwartz
Phillip Barber Changhui Koo Yossi Segal
David Castelow Jonathan Labs Radu Selea
Dean Chang Yigal Leiba James Simkins
Naftali Chayat Lingjie Li Kenneth Stanwood
Rémi Chayer John Liebetreu Carl Stevenson
Brian Eidson Hyoungsoo Lim Shawn Taylor
Carl Eklund Lars Lindh David Trinkwon
Roger Eline Heinz Lycklama Rainer Ullmann
Avraham Freedman Roger B. Marks Eyal Verbin
Marianna Goldhammer Russell McKown Lei Wang
Zion Hadad Andrew Middleton Vladimir Yanover
David Johnston Ronald Murias Choong-il Yeh
Panyuh Joo Robert Nelson Chulsik Yoon

The following participated as nonmembers in the Working Group Letter Ballot for IEEE Std 802.16e-2005:

Chang-Jae Lee Jeffrey Mandin Jose Puthenkilam
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16-2004/Cor1-2005 was prepared and finalized for IEEE Ballot:

Ray Abrishami
Aditya Agrawal
Baraa Al-Dabagh
Mario Aliotta
Dov Andelman
Sanjeev Athalye
Eli Avivi
Raja Banerjea
Kevin Baum
Izhav Bentov
Rajesh Bhalla
Eckard Bogenfeld
Sean Cai
David Castelow
Giulio Cavalli
Chan-Byoung Chae
Dean Chang
Jae Hwan Chang
Sungecheol Chang
Yong Chang
Naftali Chayat
Remi Chayer
Tao Chen
Yuehua (Lucy) Chen
Aik Chindapol
Jaehee Cho
Jaeweon Cho
Kihyoung Cho
Seokheon Cho
Hyoung-Jin Choi
Joey Chou
Jin Young Chun
Jin Yong Chung
Kyuhuyuk Chung
Jose Costa
Mark Cudak
Frank Draper
Lester Eastwood
Carl Eklund
Yigal Eliasipur
Roger Eline
Torsten Fahldieck
Yonggang Fang
Mo-Han Fong
Bogdan Franovici
Avraham Freedman
Nikhil Goel
Mariana Goldhamer
Reza Golshan
Jin Guo
Qiang Guo
Zion Hadad
Yung Hahn
Jun Han
Jeff Harrang
Haixiang He
Zhaoyun (Laura) Huang
John Humbert
Seung Ku Hwang
Jiho Jang
Jaeho Jeon
Moo Ryong Jeong
Yong Seok Jin
Brian Johnson
David Johnston
Panyuh Joo
Tal Kaitz
Ravi Kalavakunta
Samuel Kang
Ofer Kelman
Adam Kerr
Brian Kiernan
Beomjoon Kim
Bong Ho Kim
Chong-kwon Kim
Jaeyoel Kim
Jeong-Heon Kim
Jeonghwi Kim
Jung Won Kim
Min Sung Kim
Ronny (Yang-Ho) Kim
Yong Bum Kim
Young Kyun Kim
Itzik Kitrozer
Chris Knudson
Changhui Koo
Havish Koorapaty
Lafit Kotecha
Denesh Krishnasamy
Dongseung Kwon
Margaret LabBrecque
Jonathan Labs
Jules Pierre Lamoureux
Chang-jae Lee
Jae Hak Lee
Sungjin Lee
Yigal Leiba
Barry Lewis
Jun Li
Xiaodong Li
Geunhwi Lim
Hyoung Kyu Lim
Hyoungsoo Lim
Erik Lindskog
Titus Lo
Hui-Ling Lou
Heinz Lycklama
Michael Lynch
Martin Lysejko
Seung Joo Maeng
David Maez
Jeffrey Mandin
Roger B. Marks
Russell McKown
Scott Migaldi
James Mollenauer
Ollivier Mont-Reynaud
Ronald Murias
K. S. Natarajan
Gunnar Nitsche
Paul Odlyzko
Min Seok Oh
Masoud Olfat
Shlomo Ovadia
Joonho Park
Pyung-Su Park
Youngsoo Park
Trevor Pearman
Greg Phillips
Paul Piggott
Ambroise Popper
Jose Puthenkulam
Kamlesh Rath
Anthony Reid
Eric Reifsnyder
Russ Reynolds
Maximilian Riegel
Chris Rogers
Shane Rogers
Wonil Roh
Byung-Han Ryu
Kiseon Ryu
Andrew Sago
Atul Salvekar
Randall Schwartz
Christian Seagren
Yossi Segal
Radu Selea
N.K. Shankaranarayanan
Eli Shasha
James Simkins
Jung Je Son
Yeong Moon Son
Kenneth Stanwood
Shawn Taylor
Wen Tong
Rainer Ullmann
Mano Vafai
Eyal Verbin
Frederick Vook
Arthur Wang
Guo Qiang Wang
Irrving Wang
Jing Wang
Lei Wang
Stanley Wang
Alfred Wieczorek
Geng Wu
Jun Wu
Hassan Yaghoobi
Ran Yaniv
Vladimir Yanover
Choong-Hi Yeh
Kunmin Yeo
Chulsik Yoon
Wenzhong Zhang
Keqiang Zhu
Peiyiing Zhu
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16-2004/Cor1-2005 was prepared and finalized for IEEE Ballot:

Ray Abrishami
Edward Agis
Aditya Agrawal
Siavash Alamouti
Murtaza Ali
Mario Aliotta
Dov Andelman
Gordon Antonello
Eli Avivi
Phillip Barber
Kevin Baum
Rajesh Bhalla
Yufei Blankenship
Eckard Bogenfeld
Achim Brandt
Thomas Brown
Sean Cai
James Carlo
Giulio Cavalli
Jaesun Cha
Chan-Byoung Chae
Dean Chang
Jae-Hwan Chang
Sungcheol Chang
Yong Chang
Naftali Chayat
REmi Chayer
Jennifer Chen
Yuehua (Lucy) Chen
Aik Chindapol
Hua (Mary) Chion
Jaehyuk Cho
Jaewon Cho
Sejie Cho
Seokheon Cho
Hyoung-Jin Choi
Yang-Seok Choi
Joey Chou
Jin Young Chun
Josef Costa
Mark Cedak
Shujun Dang
Wim Diepstraten
Frank Draper
Krzysztof Dudzinski
Lester Eastwood
Tomas Edler
Carl Eklund
Yigal Eliaapru
Frank Exler
Torsten Fahldieck
Yonggang Fang
Peretz Feder
Dazi Feng
Mo-Han Fong
Avraham Freedman
Yan Fu
Mike Geipel
Pieter-Paul Giesberts
Nikhil Goel
Mariana Goldhamer
Reza Golshan
David Grandbaise
Qiang Guo
Zion Hadad
Jun Han
Jung Ho Han
Seishi Hanaoka
Jeff Harrang
Haixiang He
Gregory Scott Henderson
Michael Hoghooghi
Chang-Lung Hsiao
Haiming Huang
John Humbert
Yerang Hur
InSeok Hwang
Bin-Chul Ihm
Jiho Jang
Jaeho Jeon
David Johnston
Panyuh Joo
Hyunjeong Kang
Ivy Kelly
Ofer Kelman
Brian Kiernan
Beomjoon Kim
Bong Ho Kim
Byoung-Jo Kim
Dae-Joong Kim
Jaeyoul Kim
Jung Won Kim
Min Sung Kim
Ronny (Yong-Ho) Kim
Youngho Kim
Itzik Kitroser
Chris Knudsen
Changhui Koo
Havish Koorapaty
Lalit Kotecha
Toshiyuki Kuze
Seung Kwon
Jonathan Labs
Kari Lathonen
Jules Pierre Lamoureux
Chang-jae Lee
Chi-Chen Lee
Jae Hak Lee
Mihyun Lee
Sungjin Lee
Yigal Leiba
Jia-Ru Li
Jiang Li
Kemin Li
Li Li
Thomas Li
Xiaodong Li
Yongmao Li
Gaspare Licitra
Aeri Lim
Geunhwi Lim
Hyoungh Kyu Lim
Hyoungsool Lim
Zhibin Lin
Titus Lo
Hui-Ling Lou
Heinz Lycklama
Michael Lynch
Steve Ma
Seung Joo Maeng
David Maez
Mahesh Makhijani
Jeffrey Mandin
Roger B. Marks
David McGimiss
Scott Migdal
James Mollenauer
Roland Muenzner
Willem Mulder
Ronald Murias
Kenichi Nakamura
K.S. Natarajan
Mitsuo Nohara
Paul Odylyko
Shlomo Ovadia
David Paranchych
Youngsoo Park
Roger Peterson
Bonnie Petti
Greg Phillips
Paul Piggott
Ambrose Popper
Scott Probasco
Jose Puthenilkulam
Nanjian (Jeff) Qian
Hongyang Qu
Shyamal Ramachandran
Frank Rayal
Eric Reifsnider
Francis Retnasothie
Maximilian Riegel
Wonil Roh
Herbert Ruck
Kiseon Ryu
Andrew Sago
Yousuf Saifullah
Kenji Saito
Atul Salvekar
Jrg Schmidt
Christian Seagren
Yossi Segal
Radu Selea
N.K. Shankaranarayanan
Elyahu Shasha
Gang Shen
Yabing Shen
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16g-2007 was prepared and finalized for IEEE Ballot:

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ray Abrishami</td>
<td>Nikhil Goel</td>
<td>Aeri Lim</td>
<td>Geunhwi Lim</td>
</tr>
<tr>
<td>Edward Agis</td>
<td>Mariana Goldhamer</td>
<td>Geunhwi Lim</td>
<td>Hyoung Lim</td>
</tr>
<tr>
<td>Aditya Agrawal</td>
<td>Reza Golshon</td>
<td>Hyoung Lim</td>
<td>Hyoungsoo Lim</td>
</tr>
<tr>
<td>Siavash Alamouti</td>
<td>David Grandblaise</td>
<td>Zhibin Lin</td>
<td>Titus Lo</td>
</tr>
<tr>
<td>Murtaza Ali</td>
<td>Qiang Guo</td>
<td>Hui-Ling Lou</td>
<td>Heinz Lycklama</td>
</tr>
<tr>
<td>Mario Aliotta</td>
<td>Zion Hadad</td>
<td>Michael Lynch</td>
<td>Steve Ma</td>
</tr>
<tr>
<td>Dov Andelman</td>
<td>Jun Han</td>
<td>Seung Joo Maeng</td>
<td>David Maez</td>
</tr>
<tr>
<td>Gordon Antonello</td>
<td>Jung Ho Han</td>
<td>Mahesh Makihijani</td>
<td>Jeffrey Mandin</td>
</tr>
<tr>
<td>Eli Avivi</td>
<td>Seishi Hanaoka</td>
<td>Roger B. Marks</td>
<td>David McGinniss</td>
</tr>
<tr>
<td>Phillip Barber</td>
<td>Jeff Harrang</td>
<td>Scott Migaldi</td>
<td>James Mollenauer</td>
</tr>
<tr>
<td>Kevin Baum</td>
<td>Haixiang He</td>
<td>Roland Muenzner</td>
<td>Willem Mulder</td>
</tr>
<tr>
<td>Rajesh Bhalla</td>
<td>Gregory Scott Henderson</td>
<td>Ofer Kelman</td>
<td>Ronald Murias</td>
</tr>
<tr>
<td>YuFei Blankenship</td>
<td>Michael Hoghooghi</td>
<td>Kenichi Nakamura</td>
<td>Kenichi Nakamura</td>
</tr>
<tr>
<td>Eckard Bogenfeld</td>
<td>Chang-Lung Hsiao</td>
<td>K.S. Natarajan</td>
<td>Paul Odlyzko</td>
</tr>
<tr>
<td>Achim Brandt</td>
<td>Haining Huang</td>
<td>Mitsuo Nohara</td>
<td>Shlomo Ovadia</td>
</tr>
<tr>
<td>Thomas Brown</td>
<td>John Humbert</td>
<td>Youngsoo Park</td>
<td>David Paranchych</td>
</tr>
<tr>
<td>Sean Cai</td>
<td>Yeong Hur</td>
<td>Roger Peterson</td>
<td>Youngsoo Park</td>
</tr>
<tr>
<td>James Carlo</td>
<td>InSeok Hwang</td>
<td>Bonnie Petti</td>
<td>Youngsoo Park</td>
</tr>
<tr>
<td>Giulio Cavalli</td>
<td>Bin-Chul Ihm</td>
<td>Greg Phillips</td>
<td>Youngsoo Park</td>
</tr>
<tr>
<td>Jaesun Cha</td>
<td>Jiho Jung</td>
<td>Paul Piggins</td>
<td>Youngsoo Park</td>
</tr>
<tr>
<td>Chan-Byoung Chae</td>
<td>Jaecho Jeon</td>
<td>Ambrose Popper</td>
<td>Scott Probasco</td>
</tr>
<tr>
<td>Dean Chang</td>
<td>David Johnston</td>
<td></td>
<td>Jose Puthenkulam</td>
</tr>
<tr>
<td>Jae Hwan Chang</td>
<td>PanyuH Joo</td>
<td></td>
<td>Nanjian (Jeff) Qian</td>
</tr>
<tr>
<td>Sungcheol Chang</td>
<td>Hyunjeong Kang</td>
<td></td>
<td>Hongyun Qu</td>
</tr>
<tr>
<td>Yong Chang</td>
<td>Ivy Kelly</td>
<td></td>
<td>Shyamal Ramachandran</td>
</tr>
<tr>
<td>Naftali Chayat</td>
<td>Ofer Kelman</td>
<td></td>
<td>Frank Rayal</td>
</tr>
<tr>
<td>Rémi Chayer</td>
<td>Brian Kiernan</td>
<td></td>
<td>Eric Reifsnider</td>
</tr>
<tr>
<td>Jennifer Chen</td>
<td>Beomjoon Kim</td>
<td></td>
<td>Francis Retnasothie</td>
</tr>
<tr>
<td>Yuehua (Lucy) Chen</td>
<td>Bong Ho Kim</td>
<td></td>
<td>Maximilian Riegel</td>
</tr>
<tr>
<td>Aik Chindapol</td>
<td>Byoung-Jo Kim</td>
<td></td>
<td>Wonil Roh</td>
</tr>
<tr>
<td>Hua (Mary) Chion</td>
<td>Dae-Joong Kim</td>
<td></td>
<td>Herbert Ruck</td>
</tr>
<tr>
<td>Jaehbee Cho</td>
<td>Jaeyol Kim</td>
<td></td>
<td>Kiseon Ryu</td>
</tr>
<tr>
<td>Jaewoon Cho</td>
<td>Jungwon Kim</td>
<td></td>
<td>Andrew Sago</td>
</tr>
<tr>
<td>Kihyoung Cho</td>
<td>Min Sung Kim</td>
<td></td>
<td>Yousuf Saifullah</td>
</tr>
<tr>
<td>Sejei Cho</td>
<td>Ronny (Yong-Ho) Kim</td>
<td></td>
<td>Kenji Suito</td>
</tr>
<tr>
<td>Seokheon Cho</td>
<td>Youngho Kim</td>
<td></td>
<td>Atul Salvekar</td>
</tr>
<tr>
<td>Hyoung-Jin Choi</td>
<td>Itzik Kitroser</td>
<td></td>
<td>Jörg Schmidt</td>
</tr>
<tr>
<td>Yang-Seok Choi</td>
<td>Chris Knudsen</td>
<td></td>
<td>Christian Seagren</td>
</tr>
<tr>
<td>Joey Chou</td>
<td>Changhoo Koo</td>
<td></td>
<td>Yossi Segal</td>
</tr>
<tr>
<td>Jin Young Chun</td>
<td>Havish Koorapaty</td>
<td></td>
<td>Radu Selea</td>
</tr>
<tr>
<td>José Costa</td>
<td>Lalit Kotecha</td>
<td></td>
<td>N.K. Shankaranarayanan</td>
</tr>
<tr>
<td>Mark Cudak</td>
<td>Toshiyuki Kuze</td>
<td></td>
<td>Eliyahu Shasha</td>
</tr>
<tr>
<td>Shujun Dang</td>
<td>Dong Seung Kwon</td>
<td></td>
<td>Gang Shen</td>
</tr>
<tr>
<td>Wim Diepstraten</td>
<td>Jonathan Labs</td>
<td></td>
<td>Yabing Shen</td>
</tr>
<tr>
<td>Frank Draper</td>
<td>Kari Laihonen</td>
<td></td>
<td>James Simkins</td>
</tr>
<tr>
<td>Krzysztof Dudzinski</td>
<td>Jules Pierre Lamoureux</td>
<td></td>
<td>Sten Sjoberg</td>
</tr>
<tr>
<td>Lester Eastwood</td>
<td>Chang-jae Lee</td>
<td></td>
<td>Jung Je Son</td>
</tr>
<tr>
<td>Tomas Edler</td>
<td>Chi-Chen Lee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carl Eklund</td>
<td>Jae Hak Lee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yigal Eliaspur</td>
<td>Mihyun Lee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Exeler</td>
<td>Sungjin Lee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsten Faithdieck</td>
<td>Yigal Leiba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yonggang Fang</td>
<td>Jia-Ru Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peretz Feder</td>
<td>Jiang Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dazi Feng</td>
<td>Kemin Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo-Han Fong</td>
<td>Li Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avraham Freedman</td>
<td>Thomas Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yan Fu</td>
<td>Xiaodong Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mike Geipel</td>
<td>Yongmao Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pieter-Paul Giesberts</td>
<td>Gaspare Licitra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16j-2009 was prepared and finalized for IEEE Ballot:

Edward Agis
Sassan Ahmadi
Dong Hyun Ahn
JunBae Ahn
Dov Andelman
Reza Arefi
Phillip Barber
Kevin Baum
Adrian Boariu
Eckard Bogenfeld
Achim Brandt
Dale Branlund
Terri Brooks
Sean Cai
James Carlo
Jaesun Cha
Suchang Chae
Jae Hwan Chang
Sungcheol Chang
Remi Chayer
David Chen
Wei-Peng Chen
Paul Cheng
Aik Chindapol
Hua (Mary) Chion
Jaeehe Cho
Jaeeon Cho
Kihyoung Cho
Myeon-Gyun Cho
Hokyu Choi
Hyoung-Jin Choi
Hyung-Nam Choi
In-Kyeong Choi
Jinsoo Choi
Joonyoung Choi
Yang-Seok Choi
Yong-Hoon Choi
Chie Ming Chou
Joey Chou
Jerry Chow
Jimmy Chui
Takafumi Chujo
Jin Young Chun
Young-Uk Chung
Erik Colban
David Comstock
Jose Costa
Steven Crowley
Mark Cudak
George Cummings
Pranav Dayal
Carlos De Segovia
Uptak Dhaliwal
Yoshiharu Doi
Lester Eastwood
Carl Eklund
Per Elmdahl
Michael Erlihson
Yu-Chang Eun
Torsten Fahldeick
Peretz Feder
Shulan Feng
Mo-Han Fong
Avraham Freedman
I-Kang Fu
Dan Gal
Pieter-Paul Giesberts
Rob Glassford
Mariana Goldhamer
Reza Golshan
David Grandblaise
Daqing Gu
Zion Hadad
GeneBeck Hahn
Shikumbin Hamiti
Jung Ho Han
Seishi Hanaoka
Krisuke Higuchi
Minnie Ho
Chang-Lung Hsiao
Ching-Tarrg Hsieh
Yu-Tao Hsieh
Hsien-Tsung Hsu
Yuan-Ying Hsu
Teck Hu
Cancan Huang
Junhong Hui
John Humbert
Yerang Hur
In Seok Hwang
Bin-Chul Ihm
Tetsu Ikeda
Tetsushi Ikegami
Jaehyuk Jang
Klutto Milleth Jeniston Deviraj
Hyung Joon Jeon
Moo Ryong Jeong
Sunggeun Jin
Brian Johnson
Kerstin Johnsson
David Johnston
Panyuh Joo
Young-Ho Jung
Takeo Kamai
Hyunjong Kang
Seung Hyun Kang
Ofer Kelman
Brian Kiernan
Bong Ho Kim
Changkyoon Kim
Hyung Kee Kim
Kyeongsu Kim
Ronny (Yong-Ho) Kim
Sang Youb Kim
Sungkyung Kim
Young Kyun Kim
Young-II Kim
Young-jae Kim
Youngho Kim
Takaaki Kishigami
Izik Kitroser
Ali Koc
Havish Koorapatty
Thanasis Korakis
Gokhan Korkmaz
Toshiyuki Kuze
Byung-Jae Kwak
Jin Sam Kwak
Dong Seung Kwon
Yeong-Hyeon Kwon
Jonathan Labs
Pierre Lamoureux
Hyun Lee
Hyunjeong Lee
Jin Lee
Ki-Dong Lee
Kyu Ha Lee
Mi Hyun Lee
Sang-Ho Lee
Seung Joon Lee
Sukwoo Lee
Wookbong Lee
Yong Su Lee
Youn-Tai Lee
Yung-Ting Lee
Matty Levanda
Guangjie Li
Jiang Li
Jun Li
Richard Li
Shaohua Li
Thomas Li
Aeri Lim
Geunhwi Lim
Hyoung Kyu Lim
Kwangjae Lim
Tzu-Ming Lin
Zhibin Lin
Stefan Lindgren
Hang Liu
Michael Livschitz
Titus Lo
Kanchei Loa
Jianmin Lu
Yanling Lu
Michael Lynch
Mohammad Madihian
David Maez
Giovanni Maggi
Shashikant Maheshwari
Ronald Mao
Djamal-Eddine Meddour
Scott Migaldi
Chan Ho Min
Shantidev Mohanty
Andreas Molisch
James Mollenauer
Olivier Mont-Reynaud
Sungho Moon
Willem Mulder
<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yukimasa Nagai</td>
</tr>
<tr>
<td>Ayman Naguib</td>
</tr>
<tr>
<td>Kenichi Nakamura</td>
</tr>
<tr>
<td>Michiharu Nakamura</td>
</tr>
<tr>
<td>Eric Njedjou</td>
</tr>
<tr>
<td>Minseok Oh</td>
</tr>
<tr>
<td>John Norin</td>
</tr>
<tr>
<td>Paul Odlyzko</td>
</tr>
<tr>
<td>Changyoon Oh</td>
</tr>
<tr>
<td>Min-Seok Oh</td>
</tr>
<tr>
<td>Masato Okuda</td>
</tr>
<tr>
<td>Kim Olszewski</td>
</tr>
<tr>
<td>Philip Orlik</td>
</tr>
<tr>
<td>David Paranchych</td>
</tr>
<tr>
<td>D. S. Park</td>
</tr>
<tr>
<td>Jeongho Park</td>
</tr>
<tr>
<td>Vijay Patel</td>
</tr>
<tr>
<td>Roger Peterson</td>
</tr>
<tr>
<td>Paul Piggin</td>
</tr>
<tr>
<td>Robert Popoli</td>
</tr>
<tr>
<td>Darcy Poulin</td>
</tr>
<tr>
<td>Scott Probasco</td>
</tr>
<tr>
<td>Xin Qi</td>
</tr>
<tr>
<td>Nanjian (Jeff) Qian</td>
</tr>
<tr>
<td>Fei Qin</td>
</tr>
<tr>
<td>Hongyun Qu</td>
</tr>
<tr>
<td>Arvind Raghavan</td>
</tr>
<tr>
<td>Shyamal Ramachandran</td>
</tr>
<tr>
<td>Ranga K. Reddy</td>
</tr>
<tr>
<td>Fang-Ching Ren</td>
</tr>
<tr>
<td>Maximilian Riegel</td>
</tr>
<tr>
<td>Kwanhee Roh</td>
</tr>
<tr>
<td>Wonil Roh</td>
</tr>
<tr>
<td>Zhigang Rong</td>
</tr>
<tr>
<td>Adel Rouz</td>
</tr>
<tr>
<td>Philip Rubin</td>
</tr>
<tr>
<td>Herbert Ruck</td>
</tr>
<tr>
<td>Kiseon Ryu</td>
</tr>
<tr>
<td>Aryan Saed</td>
</tr>
<tr>
<td>Yousuf Saifullah</td>
</tr>
<tr>
<td>Kenji Saito</td>
</tr>
<tr>
<td>Sumeet Sandhu</td>
</tr>
<tr>
<td>Ioannis Sarris</td>
</tr>
<tr>
<td>Joerg Schaepperle</td>
</tr>
<tr>
<td>Gary Schlanger</td>
</tr>
<tr>
<td>Gamini Senarath</td>
</tr>
<tr>
<td>Jigar Shah</td>
</tr>
<tr>
<td>Zheng Shang</td>
</tr>
<tr>
<td>Ariel Sharon</td>
</tr>
<tr>
<td>Wern-Ho Sheen</td>
</tr>
<tr>
<td>Peretz Shekalim</td>
</tr>
<tr>
<td>Gang Shen</td>
</tr>
<tr>
<td>Matthew Sherman</td>
</tr>
<tr>
<td>Jaejeong (Brian) Shim</td>
</tr>
<tr>
<td>D. J. Shyu</td>
</tr>
<tr>
<td>James Simkins</td>
</tr>
<tr>
<td>Kathiravetpillai Sivanesan</td>
</tr>
<tr>
<td>Sten Sjoberg</td>
</tr>
<tr>
<td>Jung Je Son</td>
</tr>
<tr>
<td>Yeongmoon Son</td>
</tr>
<tr>
<td>Ting-Chen (Tom) Song</td>
</tr>
<tr>
<td>Young Seog Song</td>
</tr>
<tr>
<td>Roshni Srinivasan</td>
</tr>
<tr>
<td>Kenneth Stanwood</td>
</tr>
<tr>
<td>David Steer</td>
</tr>
<tr>
<td>Aram Sukiasyan</td>
</tr>
<tr>
<td>Sheng Sun</td>
</tr>
<tr>
<td>Yong Sun</td>
</tr>
<tr>
<td>Jaroslaw J. Sydir</td>
</tr>
<tr>
<td>John Sydor</td>
</tr>
<tr>
<td>Mineo Takai</td>
</tr>
<tr>
<td>Yukihiro Takatani</td>
</tr>
<tr>
<td>Pek Yew Tan</td>
</tr>
<tr>
<td>Jeffrey Tao</td>
</tr>
<tr>
<td>Rakesh Taori</td>
</tr>
<tr>
<td>Shawn Taylor</td>
</tr>
<tr>
<td>Koon Hoo Teo</td>
</tr>
<tr>
<td>Timothy Thome</td>
</tr>
<tr>
<td>Wen Tong</td>
</tr>
<tr>
<td>Arnaud Tonnerre</td>
</tr>
<tr>
<td>Shiau-He Tsai</td>
</tr>
<tr>
<td>Rainer Ullmann</td>
</tr>
<tr>
<td>David Urban</td>
</tr>
<tr>
<td>Sunil Vadgama</td>
</tr>
<tr>
<td>Lucia Valbonesi</td>
</tr>
<tr>
<td>Richard van Leeuwen</td>
</tr>
<tr>
<td>Rath Vannithambry</td>
</tr>
<tr>
<td>Muthaiah Venkatachalam</td>
</tr>
<tr>
<td>Dorin Viorel</td>
</tr>
<tr>
<td>Eugene Visotsky</td>
</tr>
<tr>
<td>Frederick Vook</td>
</tr>
<tr>
<td>Arthur Wang</td>
</tr>
<tr>
<td>Guo Qiang Wang</td>
</tr>
<tr>
<td>Lei Wang</td>
</tr>
<tr>
<td>Michael Wang</td>
</tr>
<tr>
<td>Shu-Shaw Wang</td>
</tr>
<tr>
<td>Stanley Wang</td>
</tr>
<tr>
<td>Yanhong Wang</td>
</tr>
<tr>
<td>Fujio Watanabe</td>
</tr>
<tr>
<td>Alfred Wieczorek</td>
</tr>
<tr>
<td>Geng Wu</td>
</tr>
<tr>
<td>Xuyong Wu</td>
</tr>
<tr>
<td>Yingzhe Wu</td>
</tr>
<tr>
<td>David Xiang</td>
</tr>
<tr>
<td>Chengjie Xie</td>
</tr>
<tr>
<td>Hua Xu</td>
</tr>
<tr>
<td>Ling Xu</td>
</tr>
<tr>
<td>Akiyoshi Yagi</td>
</tr>
<tr>
<td>Jen-Shun Yang</td>
</tr>
<tr>
<td>Rongzhen Yang</td>
</tr>
<tr>
<td>Xiangying Yang</td>
</tr>
<tr>
<td>Yunsong Yang</td>
</tr>
<tr>
<td>Vladimir Yanover</td>
</tr>
<tr>
<td>Hua-Chiang Yin</td>
</tr>
<tr>
<td>Hujun Yin</td>
</tr>
<tr>
<td>Chulsik Yoon</td>
</tr>
<tr>
<td>Aeran Youn</td>
</tr>
<tr>
<td>Jungnam Yun</td>
</tr>
<tr>
<td>Sangboh Yun</td>
</tr>
<tr>
<td>Masaaki Yuza</td>
</tr>
<tr>
<td>Jinyun Zhang</td>
</tr>
<tr>
<td>Kaibin Zhang</td>
</tr>
<tr>
<td>Hongming Zheng</td>
</tr>
<tr>
<td>Hua Zhou</td>
</tr>
<tr>
<td>Yuefeng Zhou</td>
</tr>
<tr>
<td>Chenxi Zhu</td>
</tr>
</tbody>
</table>
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16h-2010 was prepared and finalized for IEEE Ballot:

Edward Agis
Sassan Ahmadi
JunBae Ahn
Dov Andelman
Reza Arefi
Phillip Barber
Kevin Baum
Adrian Boariu
Terri Brooks
Sean Cai
James Carlo
Jaesun Cha
Suchang Chae
Jae Hwan Chang
Naftali Chayat
Rémi Chayer
Wei-Peng Chen
Paul Cheng
Aik Chindapol
Jaehoe Cho
Jaeweon Cho
Myeon-Gyun Cho
Hokyu Choi
Hyoung-Jin Choi
Joonyoung Choi
Yang-Seok Choi
Chie Ming Chou
Joey Chou
Takafumi Chuo
Jin Young Chun
Erik Colban
David Comstock
José Costa
Mark Cudak
Upkar Dhalwal
Yoshiharu Doi
Lester Eastwood
Carl Eklund
Michael Erlhison
Yu-Chang Eun
Shulan Feng
Mo-Han Fong
Avraham Freedman
I-Kang Fu
Pieter-Paul Giesberts
Rob Glassford
Mariana Goldhamer
David Grandblaise
Zion Hadad
Jung Ho Han
Keisuke Higuchi
Chang-Lung Hsiao
Ching-Tarranty Hsieh
Yu-Tao Hsieh
Hsien-Tsong Hsu
Yuan-Ying Hsu
In Seok Hwang
Bin-Chul Ihm
Tetsushi Ikegami
Jaehyuk Jang
Hyung Joon Jeon
Sunggeun Jin
Panyuh Joo
Young-Ho Jung
Hyeunjeong Kang
Ofer Kelman
Brian Kiernan
Changkyoon Kim
Sang Youb Kim
Young Kyun Kim
Young-jae Kim
Youngho Kim
Takaaki Kishigami
Itzik Kitroser
J. Klutto Milletl
Ali Koe
Changhoi Koo
Thanasis Korakis
Toshiyuki Kuze
Jin-Sam Kwak
Yeong-Hyeon Kwon
Jonathan Labs
Pierre Lamoureux
Hyun Lee
Ki-Dong Lee
Kyu Ha Lee
Mi Hyun Lee
Sang-Ho Lee
Seung Joon Lee
Sukwoo Lee
Youn-Tai Lee
Yung-Ting Lee
Jiang Li
Jun Li
Richard Li
Aeri Lim
Geunhwi Lim
Hyoun Kyu Lim
Kwangjae Lim
Tzu-Ming Lin
Hang Liu
Michael Livschitz
Jianmin Lu
Yanling Lu
Michael Lynch
Mohammad Madihiyan
David Maez
Giovanni Maggi
Shashikant Maheshwari
Roger B. Marks
Scott Migaldi
Shantidev Mohanty
James Mollenauser
Ollivier Mont-Reynaud
Sungho Moon
Yukimasa Nagai
Kenichi Nakamura
Mikiharu Nakamura
Mitsuo Nohara
John Norin
Changyoon Oh
Min-Seok Oh
Philip Orlit
David Paranchych
DS Park
Jeongho Park
Vijay Patel
Roger Peterson
Paul Piggins
Jose Puthenmulam
Nanjian (Jeff) Qian
Fei Qin
Hongyun Qu
Shyamal Ramachandran
Ranga Reddy
Fang-Ching Ren
Maximilian Riegel
Kwanhee Roh
Wonil Roh
Zhigang Rong
Adel Rouz
Kiseon Ryu
Yousuf Saifullah
Ioannis Sarris
Joseph Schumacher
Gamini Senarath
Zheng Shang
Ariel Sharon
Wern-Ho Sheen
Peretz Shekalim
Jaeeong (Brian) Shim
D. J. Shy
Kathiravetpillai Sivanesan
Jung Je Son
Yeongmoon Son
Ting-Chen (Tom) Song
Roshini Srinivasan
Kenneth Stanwood
Aram Sukiasyan
Sheng Sun
Yong Sun
Jaroslav J Sydir
John Sydor
Mimeo Takai
Yukihiro Takatani
Jeffrey Tao
Rakesh Taori
Shawn Taylor
Wen Tong
Arnaud Tonnerre
Rainer Ullmann
David Urban
Sunit Vadgama
Lucia Valbonesi
Richard van Leeuwen
Dorin Viorel
Eugene Visotsky
Frederick Voek
Arthur Wang
Guo Qiang Wang
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16m-2010 was prepared and finalized for IEEE Ballot:

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajni Agarwal</td>
</tr>
<tr>
<td>Anil Agiwal</td>
</tr>
<tr>
<td>Sassan Ahmadi</td>
</tr>
<tr>
<td>Hassan Al-Kanani</td>
</tr>
<tr>
<td>Xavier Ambroise</td>
</tr>
<tr>
<td>Dow Andelman</td>
</tr>
<tr>
<td>Ramesh Annavajjala</td>
</tr>
<tr>
<td>Tsuguhide Aoki</td>
</tr>
<tr>
<td>Reza Arefi</td>
</tr>
<tr>
<td>Youngkyo Baek</td>
</tr>
<tr>
<td>Phillip Barber</td>
</tr>
<tr>
<td>Harry Bims</td>
</tr>
<tr>
<td>Erez Biton</td>
</tr>
<tr>
<td>Adrian Boyer</td>
</tr>
<tr>
<td>Sean Cai</td>
</tr>
<tr>
<td>Jaesun Cha</td>
</tr>
<tr>
<td>Suchang Chae</td>
</tr>
<tr>
<td>Sung-Cheol Chang</td>
</tr>
<tr>
<td>YoungBin Chang</td>
</tr>
<tr>
<td>Yu-Hao Chang</td>
</tr>
<tr>
<td>Naftali Chayat</td>
</tr>
<tr>
<td>Cheng-Ming Chen</td>
</tr>
<tr>
<td>Chiu-Wen Chen</td>
</tr>
<tr>
<td>Mei-Dai Chen</td>
</tr>
<tr>
<td>Wei-Peng Chen</td>
</tr>
<tr>
<td>Whai-En Chen</td>
</tr>
<tr>
<td>Yih-Shen Chen</td>
</tr>
<tr>
<td>Yung-Han Chen</td>
</tr>
<tr>
<td>Yuqin Chen</td>
</tr>
<tr>
<td>Paul Cheng</td>
</tr>
<tr>
<td>Ray-Guang Cheng</td>
</tr>
<tr>
<td>Shih-Yuan Cheng</td>
</tr>
<tr>
<td>Hua (Mary) Chion</td>
</tr>
<tr>
<td>Chun-Yuan Chiu</td>
</tr>
<tr>
<td>HanGyu Cho</td>
</tr>
<tr>
<td>Jaehee Cho</td>
</tr>
<tr>
<td>Jaewoon Cho</td>
</tr>
<tr>
<td>Youngbo Cho</td>
</tr>
<tr>
<td>Hokyu Choi</td>
</tr>
<tr>
<td>Jinsoo Choi</td>
</tr>
<tr>
<td>Joonyoung Choi</td>
</tr>
<tr>
<td>Yang-Seok Choi</td>
</tr>
<tr>
<td>Chao-Chin Chou</td>
</tr>
<tr>
<td>Chie Ming Chou</td>
</tr>
<tr>
<td>Ching-Chun Chou</td>
</tr>
<tr>
<td>Joey Chou</td>
</tr>
<tr>
<td>Jerry Chow</td>
</tr>
<tr>
<td>Ming-Hsueh Chuang</td>
</tr>
<tr>
<td>Jin Young Chun</td>
</tr>
<tr>
<td>Russell Chung</td>
</tr>
<tr>
<td>Bruno Clerckx</td>
</tr>
<tr>
<td>Steven Crowley</td>
</tr>
<tr>
<td>Mark Cudak</td>
</tr>
<tr>
<td>Alexey Davydov</td>
</tr>
<tr>
<td>Kamran Etemad</td>
</tr>
<tr>
<td>Yu-Chang Eun</td>
</tr>
<tr>
<td>Linghang Fan</td>
</tr>
<tr>
<td>Huiying Fang</td>
</tr>
<tr>
<td>Yu-Chuan Fang</td>
</tr>
<tr>
<td>Peretz Feder</td>
</tr>
<tr>
<td>Chengyan Feng</td>
</tr>
<tr>
<td>Mo-Han Fong</td>
</tr>
<tr>
<td>I-Kang Fu</td>
</tr>
<tr>
<td>Jong-Kae (JK) Fwu</td>
</tr>
<tr>
<td>Dan Gai</td>
</tr>
<tr>
<td>Mariana Goldhamer</td>
</tr>
<tr>
<td>Yanfeng Guan</td>
</tr>
<tr>
<td>Michael Gundlach</td>
</tr>
<tr>
<td>Zion Hadad</td>
</tr>
<tr>
<td>GeneBeck Hahn</td>
</tr>
<tr>
<td>Seishi Hanaoka</td>
</tr>
<tr>
<td>Tom Harel</td>
</tr>
<tr>
<td>Shigenori Hayase</td>
</tr>
<tr>
<td>William Hillery</td>
</tr>
<tr>
<td>Nageen Himayat</td>
</tr>
<tr>
<td>Chieh Yuan Ho</td>
</tr>
<tr>
<td>Chung-Lien Ho</td>
</tr>
<tr>
<td>Ying-Chuan Hsiao</td>
</tr>
<tr>
<td>Ching-Tarrng Hsieh</td>
</tr>
<tr>
<td>Yu-Tao Hsieh</td>
</tr>
<tr>
<td>Chun-Yen Hsu</td>
</tr>
<tr>
<td>Chung-Hsien Hsu</td>
</tr>
<tr>
<td>Jen-Yuan Hsu</td>
</tr>
<tr>
<td>Yi Hsuan</td>
</tr>
<tr>
<td>Cancan Huang</td>
</tr>
<tr>
<td>Din Hwa Huang</td>
</tr>
<tr>
<td>Lei Huang</td>
</tr>
<tr>
<td>Jie Hui</td>
</tr>
<tr>
<td>Junhong Hui</td>
</tr>
<tr>
<td>Yerang Hur</td>
</tr>
<tr>
<td>Bin-Chul Ihm</td>
</tr>
<tr>
<td>Tetsu Ikeda</td>
</tr>
<tr>
<td>Satoshi Imata</td>
</tr>
<tr>
<td>Yih Guan Jan</td>
</tr>
<tr>
<td>Jaehyuuk Jang</td>
</tr>
<tr>
<td>Junghoon Jee</td>
</tr>
<tr>
<td>Baowei Ji</td>
</tr>
<tr>
<td>Lei Jin</td>
</tr>
<tr>
<td>Sunggeun Jin</td>
</tr>
<tr>
<td>Kerstin Johnsson</td>
</tr>
<tr>
<td>Kaushik Josiam</td>
</tr>
<tr>
<td>Rong-Terng Juang</td>
</tr>
<tr>
<td>Inuk Jung</td>
</tr>
<tr>
<td>Soojung Jung</td>
</tr>
<tr>
<td>Heewon Kang</td>
</tr>
<tr>
<td>Hyunjeong Kang</td>
</tr>
<tr>
<td>Minsuk Kang</td>
</tr>
<tr>
<td>Seunghuyun Kang</td>
</tr>
<tr>
<td>Hajime Kanzaki</td>
</tr>
<tr>
<td>Chien-Yu Kao</td>
</tr>
<tr>
<td>Tsuugo Kato</td>
</tr>
<tr>
<td>Mohammad Khojastepour</td>
</tr>
<tr>
<td>Alexey Khoryaev</td>
</tr>
<tr>
<td>Brian Kiernan</td>
</tr>
<tr>
<td>Eunkyung Kim</td>
</tr>
<tr>
<td>Jeong Gon Kim</td>
</tr>
<tr>
<td>Jihyung Kim</td>
</tr>
<tr>
<td>Juhee Kim</td>
</tr>
<tr>
<td>Namgi Kim</td>
</tr>
<tr>
<td>Ronny (Yong-Ho) Kim</td>
</tr>
<tr>
<td>Sangheon Kim</td>
</tr>
<tr>
<td>Sungkyung Kim</td>
</tr>
<tr>
<td>Taeyoung Kim</td>
</tr>
<tr>
<td>Won Ik Kim</td>
</tr>
<tr>
<td>Takaaki Kishigami</td>
</tr>
<tr>
<td>J. Klutto Milleth</td>
</tr>
<tr>
<td>Ali Koc</td>
</tr>
<tr>
<td>Thanasis Korakis</td>
</tr>
<tr>
<td>Gokhan Korkmaz</td>
</tr>
<tr>
<td>Kiran Kumar Kuchi</td>
</tr>
<tr>
<td>Ping-Heng Kuo</td>
</tr>
<tr>
<td>Jin-Sam Kwak</td>
</tr>
<tr>
<td>Dong Seung Kwon</td>
</tr>
<tr>
<td>Young Hoon Kwon</td>
</tr>
<tr>
<td>Jonathan Labs</td>
</tr>
<tr>
<td>Byung Moo Lee</td>
</tr>
<tr>
<td>Howon Lee</td>
</tr>
<tr>
<td>Hyun Lee</td>
</tr>
<tr>
<td>HyunWoo Lee</td>
</tr>
<tr>
<td>Jeong Julie Lee</td>
</tr>
<tr>
<td>Jin Lee</td>
</tr>
<tr>
<td>Ju Seung Lee</td>
</tr>
<tr>
<td>Ki-Dong Lee</td>
</tr>
<tr>
<td>Mi Hyun Lee</td>
</tr>
<tr>
<td>Sukwoo Lee</td>
</tr>
<tr>
<td>Sungjin Lee</td>
</tr>
<tr>
<td>Wookbong Lee</td>
</tr>
<tr>
<td>Yang-Han Lee</td>
</tr>
<tr>
<td>Yoon-Tai Lee</td>
</tr>
<tr>
<td>Yung-Ting Lee</td>
</tr>
<tr>
<td>Guangjie Li</td>
</tr>
<tr>
<td>Ying Li</td>
</tr>
<tr>
<td>Zexian Li</td>
</tr>
<tr>
<td>Pei-Kai Liao</td>
</tr>
<tr>
<td>Junsung Lim</td>
</tr>
<tr>
<td>Kwangjae Lim</td>
</tr>
<tr>
<td>Chih-Yuan Lin</td>
</tr>
<tr>
<td>Hsin-Piao Lin</td>
</tr>
<tr>
<td>Kuhn-Chang Lin</td>
</tr>
<tr>
<td>Yi-Ting Lin</td>
</tr>
<tr>
<td>Hang Liu</td>
</tr>
<tr>
<td>Yang Liu</td>
</tr>
<tr>
<td>Michael Livschitz</td>
</tr>
<tr>
<td>Kanchei Loa</td>
</tr>
<tr>
<td>Jianmin Lu</td>
</tr>
<tr>
<td>Katiying Lv</td>
</tr>
<tr>
<td>Mohammad Madihan</td>
</tr>
<tr>
<td>Andreas Maeder</td>
</tr>
<tr>
<td>Alexander Maltsev</td>
</tr>
<tr>
<td>Ronald Mao</td>
</tr>
<tr>
<td>Roger B. Marks</td>
</tr>
<tr>
<td>Gerard Marque-Pucheu</td>
</tr>
<tr>
<td>Arif Maskatia</td>
</tr>
<tr>
<td>Wataru Matsumoto</td>
</tr>
<tr>
<td>David Mazzarese</td>
</tr>
<tr>
<td>Sean McBeath</td>
</tr>
<tr>
<td>Djamal-Eddine Meddour</td>
</tr>
<tr>
<td>Scott Migaldi</td>
</tr>
<tr>
<td>Shantidev Mohant</td>
</tr>
</tbody>
</table>
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which the draft of IEEE Std 802.16-2012 was prepared and finalized for IEEE Ballot:

Anil Agiwal
Hanan Ahmed
Hassan Al-Kanani
Youngkyo Baek
Phillip Barber
Inbar Bratspiess
Jaesun Cha
Sungcheol Chang
YoungBin Chang
Chiu-Wen Chen
HanGyu Cho
Hee Jeong Cho
Jaeweon Cho
Youngbo Cho
Jinsoo Choi
Ching-Chun Chou
Jin Young Chun
Yu-Chuan Fang
Dan Gal
Tim Godfrey
Anh Tuan Hoang
Vinh-Dien Hoang
Ying-Chuan Hsiao
Chun-Yen Hsu
Satoshi Imata
Yih Guang Jan
Kaushik Josiam
Inuk Jung
Soojung Jung
Heewon Kang
Hyunjong Kang
Brian Kiernan
Eunkyung Kim
Hokyung Kim
Jeongki Kim
Namgi Kim
Ronny (Yong-Ho) Kim
Sangheon Kim
Seokki Kim
Taeyoung Kim
Jin Sam Kwak
Eunjong Lee
Hyun Lee
Jin Lee
Yang-Han Lee
Honggang Li
Ying Li
Chiwoo Lim
Yi-Ting Lin
Lu Liru
Andreas Maeder
Ronald Mao
Shantidev Mohanty
Ronald Murias
Anshuman Nigam
Mitsuoh Nohara
Masayuki Oodo
Giwon Park
Jeongho Park
Jisoo Park
Jaya Shankar Pathmasuntharam
Jose Puthenkulam
Fei Qin
Sudhir Ramakrishna
Wonil Roh
Kiseon Ryu
Sam Sambasivan
Ji-Yun Scol
Peretz Shekalim
Matthew Sherman
Takashhi Shono
Jung Je Son
Yeongmoon Son
Mino Takai
Ming-Hung Tao
Joseph Teo
Alessandro Triglia
Tsung-Yu Tsai
Hsien-Wei Tseng
Arthur Wang
Hai Wang
Haiguang Wang
Lei Wang
Limei Wang
Hung-Yu Wei
Xiangying Yang
Wai Leong Yeow
Hyunkyu Yu
Nader Zein
Eldad Zeira
Xin Zhang
Lei Zhou
Mingtuo Zhou

Copyright © 2022 IEEE. All rights reserved.
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16p-2012 was prepared and finalized for IEEE Ballot:

Anil Agiwal
Hanen Ahmed
Hassan Al-Kanani
Youngkyo Baek
Phillip Barber
Harry Bims
Inbar Bratspiess
Jaesun Cha
Sungecheol Chang
YoungBin Chang
Chiu-Wen Chen
HanGyu Cho
Hee Jeong Cho
Jaeweon Cho
Youngbo Cho
Jinsoo Choi
Ching-Chun Chou
Jin Young Chun
Erik Colban
Yu-Chuan Fang
Dan Gal
Tim Godfrey
Anh Tuan Hoang
Vinh-Dien Hoang
Ying-Chuan Hsiao
Chun-Yen Hsu
Satoshi Imata
Kaushik Josiam
Inuk Jung
Soojung Jung
Heewon Kang
Hyunjeong Kang
Brian Kiernan
Eunkyung Kim
Hokyung Kim
Jeongki Kim
Namgi Kim
Ronny (Yong-Ho) Kim
Sangheon Kim
Seokki Kim
Taeyoung Kim
Jin Sam Kwak
Eunjong Lee
Hyun Lee
Jin Lee
Honggang Li
Ying Li
Chiwoo Lim
Yi-Ting Lin
Lu Liu
Andreas Maeder
Ronald Mao
Roger Marks
Shantidev Mohanty
Ron Murias
Anshuman Nigam
Mitsuo Nohara
Masayuki Oodo
Giwon Park
Jeongho Park
Jisoo Park
Jaya Shankar Pathmasuntharam
Jose Puthenkulam
Fei Qin
Sudhir Ramakrishna
Wonil Roh
Kiseon Ryu
Sam Sambasivan
Ji-Yun Seol
Peretz Shekalim
Matthew Sherman
Takashi Shono
Jung Je Son
Yeongmoon Son Son
Mineo Takai
Ming-Hung Tao
Rakesh Taori
Joseph Teo
Alessandro Triglia
Tsung-Yu Tsai
Arthur Wang
Hai Wang
Haiguang Wang
Lei Wang
Limei Wang
Hung-Yu Wei
Wai Leong Yeow
Hyunkyu Yu
Nader Zein
Eldad Zeira
Xin Zhang
Yan-Xiu Zheng
Lei Zhou
Mingtuo Zhou
The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16n-2013 was prepared and finalized for IEEE Ballot:

Hassan Al-Kanani
Phillip Barber
Harry Bims
Inbar Bratspiess
Jaesun Cha
Sung-Cheol Chang
Erik Colban
Yu-Chuan Fang
Dan Gal
Tim Godfrey
Anh Tuan Hoang
Vinh Dien Hoang
Ying-Chuan Hsiao
Chun-Yen Hsu
Satoshi Imata
Soojung Jung

Hyunjeong Kang
Brian Kiernan
Eunkyung Kim
Seokki Kim
Anseok Lee
Hyun Lee
Honggang Li
Lu Liru
Andreas Maeder
Roger B. Marks
Shantidev Mohanty
Ron Murias
Masayuki Oodo
Jisoo Park
Jaya Shankar Pathmasuntharam
Fei Qin
Sam Sambasivan

Takashi Shono
Rakesh Taori
Joseph Teo
Alessandro Triglia
Arthur Wang
Haiguang Wang
Lei Wang
Hung-Yu Wei
Wai Leong Yeow
Nader Zein
Eldad Zeira
Xin Zhang
Shoukang Zheng
Yan-Xiu Zheng
Lei Zhou
Ming-Tuo Zhou

The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16q-2015 was prepared and finalized for IEEE Ballot:

Antonio Bovo
Jaesun Cha

Tim Godfrey
Eunkmyung Kim
Jisoo Park

The following members of the IEEE 802.16 Working Group on Broadband Wireless Access participated in the Working Group Letter Ballot in which IEEE Std 802.16s-2017 was prepared and finalized for IEEE Ballot:

Robert Finch
Tim Godfrey

Doug Gray
Walter Pienciak
Menashe Shahar
Guy Simpson
Introduction

This introduction is not part of IEEE Std 802.16t-2022, IEEE Standard for Air Interface for Broadband Wireless Access Systems.

This standard specifies the air interface, including the medium access control layer (MAC) and physical layer (PHY), of combined fixed and mobile point-to-multipoint broadband wireless access (BWA) systems providing multiple services. The MAC is structured to support the WirelessMAN-SC, WirelessMAN-OFDM, and WirelessMAN-OFDMA PHY specifications, each suited to a particular operational environment. The standard enables rapid worldwide deployment of innovative, cost-effective, and interoperable multi-vendor broadband wireless access products, facilitates competition in broadband access by providing alternatives to wireline broadband access, encourages consistent worldwide spectrum allocation, and accelerates the commercialization of broadband wireless access systems.

This standard is a revision of IEEE Std 802.16-2017.
Contents

1. Overview ... 35
 1.1 Scope .. 35
 1.2 Purpose ... 35
 1.3 Variants and frequency bands .. 35
 1.3.1 160 MHz licensed bands ... 36
 1.3.2 450 MHz licensed bands ... 36
 1.3.3 700 MHz licensed bands ... 36
 1.3.4 900 MHz licensed bands ... 36
 1.3.5 VHF/UHF licensed bands .. 36
 1.3.6 ??? MHz licensed bands ... 36
 1.3.7 Air interface nomenclature and compliance .. 37
 1.4 Reference models .. 37
 1.4.1 Management reference model ... 39
 1.4.2 Handover (HO) process ... 39
 1.4.3 IEEE 802.16 entity .. 39
 1.5 Multihop relay .. 40
 1.6 Support for machine-to-machine (M2M) communications .. 40
 1.7 Support for high reliability networks .. 41
 1.8 Support for multi-tier networks .. 41

2. Normative references ... 44

3. Definitions .. 50

4. Abbreviations and acronyms .. 63

5. MAC common part sublayer .. 72
 5.1 Data/Control plane ... 72
 5.1.1 Addressing and connections .. 72
 5.1.1.1 Point-to-multipoint (PMP) ... 72
 5.1.1.2 Multihop relay .. 73
 5.1.2 MAC header formats .. 74
 5.1.2.1 Generic MAC header ... 76
 5.1.2.2 Relay MAC header format ... 79
 5.1.3 MAC subheaders and special payloads ... 81
 5.1.3.1 Downlink operation ... 82
 5.1.3.2 Uplink operation .. 82
 5.1.4 MAC subheaders and special payloads ... 84
 5.1.4.1 Downlink operation ... 83
 5.1.4.2 Uplink operation .. 84
 5.1.5 Explicit path management for relay ... 85
 5.1.5.1 Path establishment, removal and update ... 83
 5.1.5.2 CID to path binding ... 84
 5.1.6 Relaying support for combined ranging and initial topology discovery 84
 5.1.7 R-link monitoring and reporting procedure for relay path management 85
 5.1.7.1 Access-link monitoring and reporting procedure for MS path management 85
 5.1.8 Path management for multicast services .. 85

29

This is an unapproved draft subject to change.
5.1.1.9 Neighbor path metric for relay ... 86
5.1.2 Relay station neighborhood discovery ... 86
 5.1.2.1 Repeatable R-amble transmission and monitoring scheme 87
 5.1.2.2 Preplanned R-amble transmission and monitoring scheme 87
5.1.3 Interference measurement in MR systems .. 87
 5.1.3.1 Interference prediction by RS neighborhood measurement 88
 5.1.3.2 Optional interference detection and measurement by RS sounding 88
5.1.4 RS broadcast message relaying ... 89
5.1.5 RS de-registration ... 90
5.1.6 MR location information .. 91
5.1.7 RS grouping .. 92
 5.1.7.1 MS movement among access stations that share the same BSID 94
 5.1.7.1.1 Mode 1 .. 94
 5.1.7.1.2 Mode 2 .. 95
5.1.8 Support of multicast operation for M2M applications 95
 5.1.8.1 M2M multicast operation in idle mode ... 95
5.1.9 Abnormal power down ... 96
 5.1.9.1 Abnormal power down reporting in normal operation 96
 5.1.9.2 Abnormal power down reporting in idle mode 96
5.1.10 M2M Short Data Burst transmission ... 97
5.2 Procedures for uncoordinated coexistence .. 97
 5.2.1 Uncoordinated coexistence mechanisms .. 97
 5.2.1.1 Overview ... 97
 5.2.1.2 Uncoordinated coexistence with specific spectrum users (SSUs) 98
 5.2.1.2.1 Overview .. 98
 5.2.1.2.2 Testing channels for other users (including specific spectrum users) .
 5.2.1.2.3 Discontinuing operations after detecting specific spectrum users 99
 5.2.1.2.4 Detecting specific spectrum users ... 99
 5.2.1.2.5 Scheduling for channel testing .. 99
 5.2.1.2.6 Requesting and reporting of measurements 100
 5.2.1.2.7 Selecting and advertising a new channel 100
 5.2.1.3 Uncoordinated coexistence with non-specific spectrum users (non-SSUs) 101
 5.2.1.3.1 Overview .. 101
 5.2.1.3.2 Dynamic Channel Selection (DCS) 101
 5.2.1.3.3 Frame structure and frame allocation 104
6. TLV encodings ... 108
 6.1 Common encodings ... 108
7. Management interfaces and procedures .. 112
17. Support for Multi-tier Networks .. 113
 17.1 ... 113
Figures

1. Figure 1-1—IEEE 802.16 protocol layering, showing SAPs ... 38
2. Figure 1-2—BWA WirelessMAN network management reference model .. 39
3. Figure 3-1—PDU and SDU in a protocol stack .. 58
4. Figure 5-1—Generic MAC header format .. 76
5. Figure 5-2—Modified DL-MAP header for channel bandwidths less than 1.25 MHz 78
6. Figure 5-3—Modified UL-MAP header for channel bandwidths less than 1.25 MHz 78
7. Figure 5-4—Header format of relay MAC PDU with payload ... 80
8. Figure 5-5—MAC signaling header type I format ... 80
9. Figure 5-6—MAC signaling header type II format ... 81
10. Figure 5-7—R-amble transmission pattern as per the preplanned scheme instructed by MR-BS 87
11. Figure 5-8—Relaying DCD/UCD procedure ... 89
12. Figure 5-9—DCD/UCD broadcasting procedure with an RS operating in centralized scheduling mode .. 90
13. Figure 5-10—Relay location report (part 1) ... 91
14. Figure 5-11—Relay location report (part 2) ... 92
15. Figure 5-12—Relay location report (part 3) ... 92
16. Figure 5-13—Flowchart showing generic operation at the BS in bands with non-SSUs only 102
17. Figure 5-14—Flowchart showing generic operation at the SS in bands with non-SSUs only 103
18. Figure 5-15—Interference reporting and remedial action at the BS .. 103
19. Figure 5-16—Interference reporting and remedial action at the SS .. 103
20. Figure 5-17—Basic four frame repetitive sequence .. 104
21. Figure 5-18—First IEEE 802.16 system claiming slot 1 ... 105
22. Figure 5-19—Second IEEE 802.16 system claiming slot 2 ... 105
23. Figure 5-20—Third IEEE 802.16 system claiming slot 3 ... 105
Tables

1 Table 1-1—Air interface variant nomenclature and compliance .. 37
2 Table 5-1—MAC header formats .. 75
3 Table 5-2—MAC header HT and EC fields encoding .. 75
4 Table 5-4—Type encodings .. 77
5 Table 5-3—Generic MAC header fields ... 77
6 Table 5-5—Description of relay MAC header fields .. 79
7 Table 5-6—Type field encodings for MAC signaling header type I ... 81
8 Table 5-7—Type field encodings for MAC signaling header type II ... 82
9 Table 6-1—Type values for common TLV encodings .. 108
IEEE Standard for Air Interface for Broadband Wireless Access Systems

1. Overview

1.1 Scope

This standard specifies the air interface, including the medium access control layer (MAC) and physical layer (PHY), of combined fixed and mobile point-to-multipoint broadband wireless access (BWA) systems providing multiple services. The MAC is structured to support multiple PHY specifications, including WirelessMAN-SC, WirelessMAN-OFDM, and WirelessMAN-OFDMA PHY specifications, each suited to a particular operational environment.

This project specifies operation in licensed spectrum with channel bandwidths greater than or equal to 5 kHz and less than 100 kHz. The project specifies a new PHY, and changes to the MAC as necessary to support the PHY. The amendment is frequency independent but focuses on spectrum less than 2 GHz. The range and data rate supported by the narrower channels are commensurate with those of the base standard, as scaled by the reduced channel bandwidth. The project also amends IEEE Std 802.16 as required to support aggregated operation in adjacent and non-adjacent channels.

This document describes the technical approach for IEEE 802.16 operation in channels less than 100 kHz bandwidth.

1.2 Purpose

This standard enables rapid worldwide deployment of innovative, cost-effective, and interoperable multivendor broadband wireless access products, facilitates competition in broadband access by providing alternatives to wireline broadband access, encourages consistent worldwide spectrum allocation, and accelerates the commercialization of broadband wireless access systems.

1.3 Variants and frequency bands

Several conforming variants of this standard are specified. The appropriate variant depends on the radio frequency band in which it operates. The primary bands of interest are described in 1.3.1 through 1.3.6. The variants are listed in 1.3.7.
1.3.1 160 MHz licensed bands

Frequencies below 11 GHz provide a physical environment where, due to the longer wavelength, LOS is not necessary and multipath may be significant. The ability to support near-LOS and non-LOS (NLOS) scenarios requires additional PHY functionality, such as the support of advanced power management techniques, interference mitigation/coexistence, and multiple antennas.

1.3.2 450 MHz licensed bands

Frequencies below 11 GHz provide a physical environment where, due to the longer wavelength, LOS is not necessary and multipath may be significant. The ability to support near-LOS and non-LOS (NLOS) scenarios requires additional PHY functionality, such as the support of advanced power management techniques, interference mitigation/coexistence, and multiple antennas.

1.3.3 700 MHz licensed bands

Frequencies below 11 GHz provide a physical environment where, due to the longer wavelength, LOS is not necessary and multipath may be significant. The ability to support near-LOS and non-LOS (NLOS) scenarios requires additional PHY functionality, such as the support of advanced power management techniques, interference mitigation/coexistence, and multiple antennas.

1.3.4 900 MHz licensed bands

Frequencies below 11 GHz provide a physical environment where, due to the longer wavelength, LOS is not necessary and multipath may be significant. The ability to support near-LOS and non-LOS (NLOS) scenarios requires additional PHY functionality, such as the support of advanced power management techniques, interference mitigation/coexistence, and multiple antennas.

1.3.5 VHF/UHF licensed bands

Frequencies below 11 GHz provide a physical environment where, due to the longer wavelength, LOS is not necessary and multipath may be significant. The ability to support near-LOS and non-LOS (NLOS) scenarios requires additional PHY functionality, such as the support of advanced power management techniques, interference mitigation/coexistence, and multiple antennas.

1.3.6 ??? MHz licensed bands

Frequencies below 11 GHz provide a physical environment where, due to the longer wavelength, LOS is not necessary and multipath may be significant. The ability to support near-LOS and non-LOS (NLOS) scenarios requires additional PHY functionality, such as the support of advanced power management techniques, interference mitigation/coexistence, and multiple antennas.
1.3.7 Air interface nomenclature and compliance

Table 1-1 summarizes the nomenclature for the various air interface variants in this standard.

Table 1-1—Air interface variant nomenclature and compliance

<table>
<thead>
<tr>
<th>Designation</th>
<th>Applicability</th>
<th>PHY specification</th>
<th>System features</th>
<th>Duplexing alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>WirelessMAN-SC Release 1.0</td>
<td>10–66 GHz</td>
<td>8.1</td>
<td>12.1</td>
<td>TDD FDD</td>
</tr>
<tr>
<td>Fixed WirelessMAN-OFDM™</td>
<td>Below 11 GHz licensed bands</td>
<td>8.3</td>
<td>12.3</td>
<td>TDD FDD</td>
</tr>
<tr>
<td>Fixed WirelessMAN-OFDMA</td>
<td>Below 11 GHz licensed bands</td>
<td>8.4</td>
<td>12.4</td>
<td>TDD FDD</td>
</tr>
<tr>
<td>WirelessMAN-OFDMA TDD Release 1.0</td>
<td>Licensed bands below 11 GHz</td>
<td>8.4</td>
<td>12.5</td>
<td>TDD</td>
</tr>
<tr>
<td>WirelessMAN-OFDMA TDD Release 1.5</td>
<td>Licensed bands below 11 GHz</td>
<td>8.4</td>
<td>12.6</td>
<td>TDD</td>
</tr>
<tr>
<td>WirelessMAN-OFDMA FDD Release 1.5</td>
<td>Licensed bands below 11 GHz</td>
<td>8.4</td>
<td>12.7</td>
<td>FDD</td>
</tr>
<tr>
<td>WirelessMAN-OFDMA MR</td>
<td>Licensed bands below 11 GHz</td>
<td>8.4</td>
<td>—</td>
<td>TDD</td>
</tr>
</tbody>
</table>

All implementations of this standard shall comply with the requirements of Clause 5 and Clause 7.

Implementations of this standard for licensed frequencies below 11 GHz (such as those listed in B.1) shall comply with the WirelessMAN-OFDM PHY as described in 8.3, the WirelessMAN-OFDMA PHY as described in 8.4, or the WirelessMAN-SC PHY as described in 8.1 for licensed frequencies above 10 GHz.

1.4 Reference models

Figure 1-1 illustrates the reference model and scope of this standard.

The MAC comprises three sublayers. The service-specific convergence sublayer (CS) provides any transformation or mapping of external network data, received through the CS service access point (SAP), into MAC service data units (SDUs) received by the MAC common part sublayer (CPS) through the MAC SAP. This includes classifying external network SDUs and associating them to the proper MAC service flow identifier (SFID) and connection identifier (CID). It may also include such functions as payload header suppression (PHS). Multiple CS specifications are provided for interfacing with various protocols. The
internal format of the CS payload is unique to the CS, and the MAC CPS is not required to understand the format of or parse any information from the CS payload.

The MAC CPS provides the core MAC functionality of system access, bandwidth allocation, connection establishment, and connection maintenance. It receives data from the various CSs, through the MAC SAP, classified to particular MAC connections. An example of MAC CPS service definition is given in Annex C. Quality of service (QoS) is applied to the transmission and scheduling of data over the PHY.

The MAC also contains a separate security sublayer providing authentication, secure key exchange, and encryption.

Data, PHY control, and statistics are transferred between the MAC CPS and the PHY via the PHY SAP (which is implementation specific).

The PHY definition includes multiple specifications, each appropriate to a particular frequency range and application. The various PHY specifications supported are discussed in Clause 8. The Management/Control Plane may also include the “CX Management part” of WirelessMAN-CX composed of the “Distributed Coexistence Information Database,” “Distributed Radio Resource Management,” and “Coexistence Protocol (CXP).” All these parts are supported at the MAC level.

The IEEE 802.16 devices can include Subscriber Stations (SS) or Mobile Stations (MS), or Base Stations (BS). As the IEEE 802.16 devices may be part of a larger network and therefore would require interfacing with entities for management and control purposes, a Network Control and Management System (NCMS) abstraction has been introduced in this standard as a “black box” containing these entities. The NCMS abstraction allows the PHY/MAC layers specified in IEEE Std 802.16 to be independent of the network architecture, the transport network, and the protocols used at the backend and therefore allows greater flexibility. NCMS logically exists at BS side and SS/MS side of the radio interface, termed NCMS(BS) and NCMS(SS/MS), respectively. Any necessary inter-BS coordination is handled through the NCMS(BS).
This specification includes a Control SAP (C-SAP) and Management SAP (M-SAP) that expose control plane and management plane functions to upper layers. The C-SAP and M-SAP interfaces are described in Clause 7. The NCMS uses the C-SAP and M-SAP to interface with the IEEE 802.16 entity. In order to provide correct MAC operation, NCMS shall be present within each SS/MS. The NCMS is a layer independent entity that may be viewed as a management entity or control entity. General system management entities can perform functions through NCMS and standard management protocols can be implemented in the NCMS.

1.4.1 Management reference model

Figure 1-2 shows a management reference model of BWA networks. It consists of a network management system (NMS), managed nodes, and a Network Control System. Managed nodes, such as BS, MS and SS, collect and store the managed objects in the format of WirelessMAN Interface MIB (e.g., wmanIfMib) and Device MIB (e.g., wmanDevMib) that are made available to NMSs via management protocols, such as Simple Network Management Protocol (SNMP). A Network Control System contains the service flow and the associated QoS information that have to be populated to BS when a SS or MS enters into a BS network.

The management information between SS/MS and BS will be carried over the secondary management connection for managed SS or MS. If the secondary management connection does not exist, the SNMP messages, or other management protocol messages, may go through another interface in the customer premise or on a transport connection over the air interface.

![Figure 1-2—BWA WirelessMAN network management reference model](image-url)

1.4.2 Handover (HO) process

The HO process in which an MS migrates from the air-interface provided by one BS to the air-interface provided by another BS is defined in 6.3.20.2.

1.4.3 IEEE 802.16 entity

An IEEE 802.16 entity is defined as the logical entity in an SS/MS or BS that comprises the PHY and MAC layers of the Data Plane and the Management/Control Plane.
1.6 Multihop relay

Multihop relay (MR) is an optional deployment that may be used to provide additional coverage or performance advantage in an access network. In MR networks, the BS may be replaced by a multihop relay BS (MR-BS) and one or more relay stations (RS).

Traffic and signaling between the SS and MR-BS are relayed by the RS thereby extending the coverage and performance of the system in areas where RSs are deployed. Each RS is under the supervision of an MR-BS. In a more than two hop system, traffic and signaling between an access RS and MR-BS may also be relayed through intermediate RSs. The RS may be fixed in location (i.e., attached to a building) or, in the case of an access RS, it may be mobile (i.e., traveling with a transportation vehicle). The SS may also communicate directly with the MR-BS.

The various MR features defined throughout this standard permit a multihop relay system to be configured in several modes.

The protocols (including the mobility features) on the access link remain unchanged. New functionality has been specified on the relay link to support the MR features.

Two different modes (centralized and distributed scheduling) are specified for controlling the allocation of bandwidths for an SS or an RS. In centralized scheduling mode, the bandwidth allocation for an RS’s subordinate stations is determined at the MR-BS; conversely in distributed scheduling mode, the bandwidth allocation of an RS’s subordinate stations is determined by the RS, in cooperation with the MR-BS.

Two different types of RS are defined, namely transparent and non-transparent. A non-transparent RS can operate in both centralized and distributed scheduling mode, while a transparent RS can only operate in centralized scheduling mode.

A transparent RS communicates with the superordinate station and subordinate station(s) using the same carrier frequency. A non-transparent RS may communicate with the superordinate station and subordinate station(s) using the same or different carrier frequencies.

The MAC layer includes extensions to signaling to support functions such as network entry (of an RS, and of an SS through an RS), bandwidth request, forwarding of PDUs, connection management, and handover.

Two different security modes are defined (see Clause 7). The first one, referred to as the centralized security mode, is based on key management between an MR-BS and an SS. The second security mode, referred to as the distributed security mode, incorporates authentication and key management between an MR-BS and a non-transparent access RS and between the access-RS and an SS.

An RS may be configured to operate either in normal CID allocation mode, where primary management, secondary, and basic CIDs are allocated by the MR-BS or in local CID allocation mode where the primary management and basic CID are allocated by the RS. The network management of RS shall use secondary management connection and shall follow the management reference model as defined in 1.4.1.

The PHY includes extensions to the OFDMA-PHY layer (see 8.4) for transmission of PHY PDUs across the relay link between the MR-BS and the RS.

1.7 Support for machine-to-machine (M2M) communications

The M2M communication is referred to as the information exchange between devices through a base station, or between a device and a server in the core network through a base station that may be carried out without any human interaction.
M2M communications is a very distinct capability that enables the implementation of the “Internet of things.”

Some of the typical use cases that the M2M communication enables are secured access and surveillance, tracking and tracing, public safety, payment, healthcare, remote maintenance and control, metering, consumer devices, and retailing.

In order to enable a range of machine-to-machine applications in which the device communications require wide area wireless coverage in licensed bands, and are automated rather than human-initiated or human-controlled for purposes such as observation and control, some MAC protocols and PHY specifications have been changed for enhancement. MAC enhancements and minimal PHY modifications include support of lower power consumption at the device, support by the base station of significantly larger numbers of devices, efficient support of small burst transmission, and improved device authentication.

1.8 Support for high reliability networks

A high reliability (HR) network implements features that enable increased robustness and alternate radio path establishment in a degraded network, in the case of failure of one or more infrastructure nodes or network connectivity.

In order to support high reliability in WirelessMAN-OFDMA, multi-mode operation of base station as a relay and mobile station as a relay, direct communication between MSs, forwarding of MS traffic to the network and another MS by other MS, standalone network, local forwarding bypassing backhaul links, path management against single point of failures by providing alternative radio and backhaul paths, and enhanced multicast-based service among a group of mobile stations are supported.

Those distinct functionalities in HR Networks support the mission critical application, including Public Safety, Avionics, Airport Surface, and Smart Grid.

1.9 Support for multi-tier networks

Multi-tier networks utilize base stations of a variety of power level tiers, each of which represents a different range of operating power levels, in order to improve network capacity and efficiently manage radio resources, in comparison to networks using only base stations of a uniform power level tier. In such multi-tier networks, coordination techniques among base stations across multiple tiers and among base stations in the same tier are important to achieve system capacity enhancements. Interference mitigation techniques across tiers is also critical to achieving user throughput enhancements.

Multi-tier network operation is specified in this standard to support efficient cooperation among base stations in multi-tier networks in order to enhance interference mitigation, mobility management, and base station power management. Associated management protocol among base stations and between base stations and mobile stations enables efficient cooperation and coordination. Multi-tier network operation is supported by a specific set of MAC management messages, without physical layer customization of mobile stations. This standard addresses two tiers of network, with higher-power base stations (BSs) that are capable of signaling to lower-power stations, known as small base stations (SBSs).
2. Normative references

The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

ETSI EN 301 213-3, Fixed Radio Systems; Point-to-multipoint equipment; Point-to-multipoint digital radio systems in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 3: Time Division Multiple Access (TDMA) methods, Version 1.3.1, Sept. 2001.²

FIPS 46-3, Data Encryption Standard (DES), Oct. 1999.³ This reference is withdrawn.

FIPS 74, Guidelines for Implementing and Using the NBS Data Encryption Standard, Apr. 1981. This reference is withdrawn.

FIPS 81, DES Modes of Operation, Dec. 1980. This reference is withdrawn.

FIPS 180-1, Secure Hash Standard (SHS), Apr. 1995. This reference is withdrawn.

FIPS 186-2, Digital Signature Standard (DSS), Jan. 2000. This reference is withdrawn.

FIPS 197, Advanced Encryption Standard (AES).

IEEE Std 802®, IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture.⁴, ⁵

IEEE Std 802.1D™, IEEE Standard for Local and metropolitan Area Networks: Media Access Control (MAC) Bridges.⁶

IEEE Std 802.1Q™, IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks.

¹ATM Forum publications are available from the ATM Forum (http://www.atmforum.com/).
²ETSI publications are available from the European Telecommunications Standards Institute (http://www.etsi.org/).
³FIPS publications are available from the National Technical Information Service (NTIS) (http://www.ntis.gov/).
⁴IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.
⁵IEEE publications are available from The Institute of Electrical and Electronics Engineers, Inc. (http://standards.ieee.org/).
⁶IEEE standards referred to in Clause 2 are trademarks owned by The Institute of Electrical and Electronics Engineers, Incorporated.

1IETF publications are available from the Internet Engineering Task Force (http://www.ietf.org/).

Internet Assigned Numbers Authority (IANA), “Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP) Parameters.”

Internet Assigned Numbers Authority (IANA), “Dynamic Host Configuration Protocol for IPv6 (DHCPv6).”

ITU Radio Regulations, Volume 1, Article 5, 2008.9

8ISO/IEC publications are available from the ISO Central Secretariat (http://www.iso.ch/). ISO/IEC publications are also available in the United States from the American National Standards Institute (http://www.ansi.org/).

9ITU publications are available from the International Telecommunications Union (http://www.itu.int/).
ITU-T Recommendation X.25—Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit, Oct. 1996.

NIST Special Publication 800-38A—Recommendation for Block Cipher Modes of Operation—Methods and Techniques.10

NIST Special Publication 800-38B—Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication.

WiMAX Forum® Mobile System Profile Release 1—IMT-2000 Edition.11

WiMAX Forum Mobile System Profile Release 1.5—Common Part.

WiMAX Forum Mobile System Profile Release 1.5—FDD Specific Part.

WiMAX Forum Mobile System Profile Release 1.5—TDD Specific Part.

10NIST publications are available from the National Institute of Standards and Technology (http://csrc.nist.gov/).
11WiMAX publications are available from the WiMAX Forum (http://www.wimaxforum.org/).
3. Definitions

Insert the following definitions in alphabetical order:

AAI-only ABS: A base station that supports the WirelessMAN-Advanced Air Interface specified by IEEE Std 802.16.1-2012, but does not support the OFDMA air interface specified in IEEE Std 802.16.

acceptable interference: An interference caused by an interference signal that does not degrade the current selection of modulation and coding at a receiver.

acceptable interference threshold: A value (in dBm) of a signal level, below which an interference signal causes acceptable interference.

access link: A radio link between an MR-BS or RS and an MS, or between an MR-BS or RS and a subordinate RS during network entry.

access RS: A relay station that serves as an access station.

access station: A station that provides a point of access into the network for an MS or RS. An access station can be a base station (BS), relay station (RS), or multihop relay BS (MR-BS).

active base station: A BS that is informed of the mobile station (MS) capabilities, security parameters, service flows, and full medium access control layer (MAC) context information.

adaptive antenna system (AAS): An array of antennas and associated signal processing that together is able to change its antenna radiation pattern dynamically to adjust to noise environment, interference and multipath.

adaptive modulation: A system’s ability to communicate with another system using multiple burst profiles and a system’s ability to subsequently communicate with multiple systems using different burst profiles.

adjacent subcarrier allocation: A variation of PUSC permutation wherein the subcarriers are located adjacent to each other.

adjacent subcarrier permutation: A permutation scheme in which symbol data within a subchannel is assigned to adjacent subcarriers and wherein the pilot and data subcarriers are assigned fixed positions in the frequency domain within an OFDMA symbol.

affected HR-BS: An HR-BS that is experiencing a failure of its backhaul connection to the backbone network. See also: high reliability base station (HR-BS).

alternative channel (ALTCH): A physical (frequency) channel determined by the base station as being a suitable alternative physical channel for use if its current physical channel becomes unavailable.

alternative subframe (ALTSF): A subframe that can be used by the base station of a system because it is unoccupied.

anchor base station: A base station, used with macro diversity handover or fast base station switching, supporting mobile station registration, synchronization, ranging, and downlink monitoring.

Authenticator: Entity in the network control and management system (NCMS) incorporating AAA client functionality and facilitating authentication of a supplicant.
automatic repeat request (ARQ) block: A distinct unit of data that is carried on an ARQ-enabled connection.

backbone network: A communication mechanism by which two or more base stations (BSs) communicate to each other. It may also include communication with other networks. The method of communication for backbone networks is outside the scope of IEEE Std 802.16.

band AMC: A permutation scheme in which the entire channel is split into groups of contiguous subcarriers.

bandwidth stealing: The use, by a subscriber station (SS), of a portion of the bandwidth allocated in response to a bandwidth request (BR) for a connection to send a BR or data for any of its connections.

NOTE—See also 6.3.6.12

base station (BS): A generalized equipment set providing connectivity, management, and control of the subscriber station (SS). See also: active base station (BS), anchor base station (BS), neighbor base station (BS), serving base station (BS), target base station (BS).

base station (BS) receive/transmit transition gap (RTG): A gap between the last sample of the uplink (UL) burst and the first sample of the subsequent downlink (DL) burst at the antenna port of the BS in a time division duplex (TDD) transceiver. This gap allows time for the BS to switch from receive (Rx) to transmit (Tx) mode. During this gap, the BS is not transmitting modulated data but simply allowing the BS transmitter carrier to ramp up and the Tx/Rx antenna switch to actuate. Not applicable for frequency division duplex (FDD) systems.

base station (BS) transmit/receive transition gap (TTG): A gap between the last sample of the downlink (DL) burst and the first sample of the subsequent uplink (UL) burst at the antenna port of the BS in a time division duplex (TDD) transceiver. This gap allows time for the BS to switch from transmit (Tx) to receive (Rx) mode. During this gap, the BS is not transmitting modulated data but simply allowing the BS transmitter carrier to ramp down, the Tx/Rx antenna switch to actuate, and the BS receiver section to activate. Not applicable for frequency division duplex (FDD) systems.

basic connection: Connection that is established during subscriber station (SS) initial ranging and used to transport delay-intolerant medium access control layer (MAC) management messages.

broadband: Having instantaneous bandwidths greater than around 1 MHz and supporting data rates greater than about 1.5 Mb/s.

broadband wireless access (BWA): Wireless access in which the connection(s) capabilities are broadband.

broadcast connection: The management connection used by the base station (BS) to send medium access control layer (MAC) management messages on a downlink (DL) to all subscriber stations (SSs). The broadcast connection is identified by a well-known connection identifier (CID). A fragmentable broadcast connection is a connection that allows fragmentation of broadcast MAC management messages.

NOTE—See Table 10-5.

BS power controller: BS power controller is a network element that performs BS power management services in the network control and management system (NCMS).
burst profile: Set of parameters that describe the uplink (UL) or downlink (DL) transmission properties associated with an interval usage code. Each profile contains parameters such as modulation type, forward error correction (FEC) type, preamble length, guard times, etc. See also: interval usage code.

bursty system: A system that comprises non-SSU units and transmits data in short uneven intervals.

candidate channel: A frequency channel within the frequency band that may be used by a system.

centralized scheduling: A mode of operation applicable to multihop relay where a multihop relay BS (MR-BS) determines the bandwidth allocations and generates the corresponding MAPs [or dictates the information used by relay stations (RSs) to generate their MAPs] for all access and relay links in the MR-cell.

channel identifier (ChID): An identifier used to distinguish between multiple uplink (UL) channels, all of which are associated with the same downlink (DL) channel.

coexistence: A state of acceptable co-channel and/or adjacent channel operation of two or more radio systems (possibly using different wireless access technologies) within the same geographical area.

coexistence community: A coexistence community is composed of those systems that have resolved their interference and coexist within it.

Coexistence Control Channel (CXCC): A logical channel composed of a periodic sequence of time slots, which may be used for sensing, synchronization, cumulated interference measurement and broadcast of the coordinated coexistence related information. CXCC is used for WirelessMAN-CX and may be used for WirelessMAN-UCP.

Coexistence frame (CX-Frame): A pre-defined sequence of IEEE 802.16 DL and UL subframes that, in conjunction with associated operational rules, is used for facilitating coexistence between systems.

Coexistence Messaging Interval (CMI): A unique repetitive sequence of intervals defined in CXCC and claimed by a system. It is used for broadcasting system’s main radio parameters to other systems in its Coexistence Community using always the same predefined PHY parameters.

coexistence messaging mechanism: The messaging mechanism defined in WirelessMAN-CX to exchange information specifically between wireless systems with the same PHY profiles.

Coexistence Protocol (CXP): An intersystem protocol for improving coexistence through the exchange of information, using communication over-the-air or back-haul. Messages for intersystem communication over-the-air and primitives for communication over the backhaul are provided.

coexistence signaling: The signaling mechanism defined in WirelessMAN-CX to exchange information between wireless systems with or without the same PHY profiles.

Coexistence Signaling Interval (CSI): A predefined time slot not associated with the CXCC, used for coexistence signaling purposes between systems that may have different PHYs. This technique uses power keyed energy symbols and RSSI detection, by a BS to contact its coexistence neighbor BS through one or more coexistence neighbor SSs in the common coverage area.

Coexistence Signaling Interval Number (CSIN): The allocation of CSI according to the time order within CX-Frame. The range of CSIN is from 0 to 3 while 0-3 is referring to OCSI1/OCSI2/OCSI3/ICSI, respectively.
cognitive radio (CR): A system that is aware of its operational environment and internal state, and has the capability to make decisions about its radio operating behavior. An active cognitive radio can share information regarding its spectral/temporal/spatial characteristics with other similar systems and/or dynamically and autonomously adjust its radio operating parameters depending on the results of its actions and environmental usage patterns. This definition reflects the CR functionality in IEEE Std 802.16.

Common subframe: That part at the beginning of the MAC Frame within the CX-Frame where all the systems of a coexistence neighborhood may operate in parallel. The operation of non-Master systems during these subframes may require limitations on the transmit power.

community: A group of systems that coordinate to resolve their interference.

congeation: The act of combining multiple medium access control layer (MAC) protocol data units (PDUs) into a single physical layer (PHY) service data unit (SDU).

connection: A unidirectional mapping between base station (BS) and subscriber station (SS) medium access control layer (MAC) peers. Connections are identified by a connection identifier (CID). The MAC defines two kinds of connections: management connections and transport connections. See also: connection identifier (CID).

connection identifier (CID): A 16-bit value that identifies a transport connection or an uplink (UL)/downlink (DL) pair of associated management connections [i.e., belonging to the same subscriber station (SS)] to equivalent peers in the medium access control layer (MAC) of the base station (BS) and SS. The CID address space is common (i.e., shared) between UL and DL and partitioned among the different types of connections. Security associations (SAs) also exist between keying material and CIDs. See also: connection.

NOTE—Table 10-5 specifies how the CID address space is partitioned among the different types of connections.

Coordinated Coexistence Mechanism: A coexistence mechanism relying on rules of behavior based on a common Coexistence Frame (CX-Frame) and a Coexistence Control Channel (CXCC).

Credit Token-Based Coexistence Protocol (CT-CXP): Over-the-air or backhaul-based mechanisms enabling dynamic subframe sharing between systems.

DC subcarrier: In an orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) signal, the subcarrier whose frequency would be equal to the radio frequency (RF) center frequency of the station.

destination base station (BS): The BS that responds to an intersystem communication request.

destructive interference: Interference that disables a particular PHY receiver from receiving using any combination of its modulation and coding methods.

detection threshold: A value (in dBm) of a signal level, used for the purpose of initiating an action.

distributed scheduling: A mode of operation applicable to multihop relay where the MR-BS and each RS in the MR-cell (with or without information from the MR-BS) determine the bandwidth allocations and generate the corresponding MAPs for the access link to/from their subordinate SSs and/or relay links to/from their subordinate RSs.

diversity set: A list of active base stations (BSs) to the mobile station (MS). The diversity set is managed by the MS and BSs and is applicable to macro diversity handover (MDHO) and fast BS switching (FBSS).
DL access zone: A portion of the DL subframe in the MR-BS/RS frame used for MR-BS/RS to MS or RS (except TTR RS in TDD mode) transmission. The DL access zone may consist of the entire downlink subframe, depending on the method used to separate the transmissions on the access and relay links.

DL relay zone: A portion of the DL subframe in the MR-BS/RS frame used for MR-BS/RS to RS transmission. A frame may have no DL relay zone, depending on the method used to separate the transmissions on the access and relay links.

downlink (DL): The direction from the base station (BS) to the subscriber station (SS).

downlink burst transition gap (DLBTG): The gap included on the trailing edge of each allocated downlink (DL) burst so that ramp-down can occur and delay-spread can clear receivers.

downlink channel descriptor (DCD): A medium access control layer (MAC) message that describes the physical layer (PHY) characteristics of a downlink (DL) channel.

downlink interval usage code (DIUC): An interval usage code specific to a downlink (DL). See also: interval usage code.

downlink map (DL-MAP): A medium access control layer (MAC) message that defines burst start times for both time division multiplex and time division multiple access (TDMA) by a subscriber station (SS) on the downlink (DL).

Dynamic Channel Selection (DCS): The ability of a system to switch to a different physical (frequency) operating channel based on channel measurements avoiding interference in license-exempt bands of operation. DCS is distinct from DFS (Dynamic Frequency Selection) because DCS is not used for interference avoidance to regulatory protected devices, such as radar systems, but to other non-SSUs in the band.

dynamic frequency selection (DFS): The ability of a system to switch to different physical radio frequency (RF) channels based on channel measurement criteria to conform to particular regulatory requirements.

dynamic service: The set of messages and protocols that allow the base station (BS) and subscriber station (SS) to add, modify, or delete the characteristics of a service flow.

fast base station switching (FBSS): Base station (BS) switching that utilizes a fast switching mechanism to improve link quality. The mobile station (MS) is only transmitting/receiving data to/from one of the active BS (anchor BS) at any given frame. The anchor BS can change from frame to frame depending on the BS selection scheme.

fixed wireless access: Wireless access application in which the locations of the base station (BS) and subscriber station (SS) are fixed in location during operation.

frame: A structured data sequence of fixed duration used by some physical layer (PHY) specifications. A frame may contain both an uplink (UL) subframe and a downlink (DL) subframe.

frequency assignment (FA): A logical assignment of downlink (DL) center frequency and channel bandwidth programmed to the base station (BS).

frequency assignment (FA) index: A network-specific logical FA index assignment. FA index assignment is used in combination with operator-specific configuration information provided to the mobile station (MS) in a method outside the scope of IEEE Std 802.16.
frequency division duplex (FDD): A duplex scheme in which uplink (UL) and downlink (DL) transmissions use different frequencies but are typically simultaneous.

frequency offset index: An index number identifying a particular subcarrier in an orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) signal, which is related to its subcarrier index. Frequency offset indices may be positive or negative.

group key encryption key (GKEK): A random number generated by the base station (BS) or a network entity [e.g., an authentication and service authorization (ASA) server] used to encrypt the group traffic encryption keys (GTEKs) sent in broadcast messages by the BS to mobile stations (MSs) in the same multicast group.

handover (HO): The process in which a mobile station (MS) migrates from the air-interface provided by one base station (BS) to the air-interface provided by another BS. A break-before-make HO is where service with the target BS starts after a disconnection of service with the previous serving BS. A make-before-break HO is where service with the target BS starts before disconnection of the service with the previous serving BS.

harmful interference: An interference caused by an interference signal that seriously degrades, obstructs, or repeatedly interrupts the radio communication.

high reliability base station (HR-BS): A base station that is a subset of base station (BS) features and functions and additionally supports the WirelessMAN-High Reliability Air Interface. See also: **base station (BS)**.

high reliability mobile station (HR-MS): A subscriber station capable of performing the WirelessMAN-OFDMA subset of mobile station (MS) features and functions and additionally implementing the WirelessMAN-High Reliability Air Interface. See also: **mobile station (MS)**.

high reliability network (HR-Network): A network compliant with High Reliability Air Interface System.

high reliability relay station (HR-RS): A relay station that is a subset of relay station (RS) features and functions and additionally supports the WirelessMAN-High Reliability Air Interface.

high reliability station (HR-station): An HR-MS, HR-BS, or HR-RS.

infrastructure station: An MR-BS, RS, HR-BS, or HR-RS. See also: **multihop relay base station (MR-BS), relay station (RS), high reliability base station (HR-BS), high reliability relay station (HR-RS)**.

Initialization Coexistence Signaling Interval (ICSI): The periodically appointed CSI specially used by an Initializing Base Station (IBS) to contact its neighbor OBS. When the IBS gets the OCSI allocation and starts the operating stage, it will cease from using the ICSI.

NOTE—See Table 10-5.

initial ranging connection: A management connection used by the subscriber station (SS) and the base station (BS) during the initial ranging process. The initial ranging connection is identified by a well-known connection identifier (CID). This CID is defined as a constant value within the protocol since an SS has no addressing information available until the initial ranging process is complete.

Interference Evaluation Burst (IEB): A short regular data transmission during an interference-free slot. This transmission is scheduled using CXP messages. The time position of this interval is associated with an IEB identifier.
intermediate RS: A relay station that is located on a path between an MR-BS and an access RS.

interval usage code: A code identifying a particular burst profile that can be used by a downlink (DL) or uplink (UL) transmission interval.

licensing regime: Specific service rules defined by a regulatory body for a given band and possibly region of operation.

Location Based Services (LBS): Services that are based on location data of the MS and/or BS in a network of IEEE 802.16 devices. Examples in location sensitized applications, emergency call origination tracking, equipment tracking, etc.

machine-to-machine (M2M) communication: Information exchange between user devices through a Base Station, or between a device and a server in the core network through a Base Station, that may be carried out without any human interaction.

M2M feature: A unique characteristic of an M2M application.

macro diversity handover (MDHO): The process in which a mobile station (MS) migrates from the air-interface provided by one or more base stations (BSs) to the air-interface provided by one or more other BSs. This process is accomplished in the downlink (DL) by having two or more BSs transmitting the same medium access control layer (MAC) or physical layer (PHY) protocol data unit (PDU) to the MS so that diversity combining can be performed by the MS. In the uplink (UL), it is accomplished by having two or more BSs receiving (demodulating, decoding) the same PDU from the MS so that diversity combining of the received PDU can be performed among the BSs.

management connection: A connection used for transporting medium access control layer (MAC) management messages or standards-based messages required by the MAC. For MAC management messages, see also: basic connection, primary management connection, broadcast connection, initial ranging connection. For standards-based messages required by the MAC, see also: secondary management connection.

NOTE—Table 6-56 specifies which MAC management message is transmitted on which of the management connections.

management tunnel CID (MT-CID): An identifier taken from the connection identifier (CID) space managed by an MR-BS that uniquely identifies a management tunnel connection between the MR-BS and an access RS.

Master subframe: The part of the MAC frame that is used by a specific system (Master system) of a coexistence community to operate with reduced interference from its neighboring systems.

Master system: A specific system that operates during the Master subframe. Systems of a coexistence community equally share the role of Master system on a rotating basis.

minislot: A unit of uplink (UL) bandwidth allocation equivalent to n physical slots (PSs), where $n = 2^m$ and m is an integer ranging from 0 through 7.

mobile station (MS): A station in the mobile service intended to be used while in motion or during halts at unspecified points. An MS is always a subscriber station (SS) unless specifically excepted otherwise in IEEE Std 802.16.

MR-BS frame: Frame structure for DL transmission/UL reception by MR-BS.

M2M ASN: An Access Service Network that supports M2M service.
M2M device: An MS that is capable of providing M2M communication.

M2M device group: A group of M2M devices that share one or more downlink multicast service flows.

M2M feature: A unique characteristic of an M2M application.

multicast polling group: A group of zero or more subscriber stations (SSs) that are assigned a multicast address for the purposes of polling.

multihop relay base station (MR-BS): A generalized equipment set providing connectivity, management, and control of relay stations and subscriber stations. See also: base station (BS), relay station (RS).

multiple input multiple output (MIMO): A system employing at least two transmit (Tx) antennas and at least two receive (Rx) antennas to improve the system capacity, coverage, or throughput.

neighbor base station (BS): For any mobile station (MS), a BS (other than the serving BS) whose downlink (DL) transmission can be received by the MS.

non-transparent RS: A relay station that transmits DL frame-start preamble, FCH, MAP message(s) and channel descriptor (DCD/UCD) messages.

Operation Coexistence Signaling Interval (OCSI): All the CSIs other than ICSI, periodically reallocated to OBSs.

Operator ID: Operator ID is an identifier of the network provider. The Operator ID is contained in the Base Station ID.

orderly power-down procedure: The procedure that the mobile station (MS) performs when powering down, for example, as directed by user input or as prompted by a automatic power-down mechanism.

packing: The act of combining multiple service data units (SDUs) from a higher layer into a single medium access control layer (MAC) protocol data unit (PDU).

Paging Controller: A unit that belongs to the idle mode services in the network control and management system (NCMS). The paging controller retains the MS state and operational parameters and/or administers paging activity for the MS while in idle mode.

payload header suppression (PHS): The process of suppressing the repetitive portion of payload headers at the sender and restoring the headers at the receiver.

Payload Header Suppression field (PHSF): A string of bytes representing the header portion of a protocol data unit (PDU) in which one or more bytes are to be suppressed (i.e., a snapshot of the uncompressed PDU header inclusive of suppressed and unsuppressed bytes).

payload header suppression index (PHSI): An 8-bit value that references the payload header suppression (PHS) rule.

payload header suppression mask (PHSM): A bit mask indicating which bytes in the Payload Header Suppression field (PHSF) to suppress and which bytes to not suppress.

payload header suppression size (PHSS): The length of the suppressed field in bytes. This value is equivalent to the number of bytes in the Payload Header Suppression field (PHSF) and also the number of valid bits in the payload header suppression mask (PHSM).
payload header suppression valid (PHSV): A flag that tells the sending entity to verify all bytes that are to be suppressed.

physical slot (PS): A unit of time, dependent on the physical layer (PHY) specification, for allocating bandwidth.

point-to-point (PtP): A mode of operation whereby a link exists between two network entities.

primary management connection: A connection that is established during initial subscriber station (SS) ranging and used to transport delay-tolerant medium access control layer (MAC) management messages.

Primary service: See ITU Radio Regulations, sections 5.2 to 5.31.

Primary (Spectrum) users: Users of radio services that have a regulatory PRIMARY status in a band. In a given frequency allocation there may be SSU, non-SSU, or both SSU and non-SSU, assigned as primary users.

Privacy Key Management (PKM) Protocol: A client/server model between the base station (BS) and subscriber station (SS) that is used to secure distribution of keying material.

protocol data unit (PDU): The data unit exchanged between peer entities of the same protocol layer. On the downward direction, it is the data unit generated for the next lower layer. On the upward direction, it is the data unit received from the previous lower layer (see Figure 3-1).

![Figure 3-1—PDU and SDU in a protocol stack](image)

quality of service (QoS) parameter set: A parameter set associated with a service flow identifier (SFID). The contained traffic parameters define scheduling behavior of uplink (UL) or downlink (DL) flows associated with transport connections.

NOTE—See 6.3.14.1.
radio frequency (RF) center frequency: The center of the frequency band in which a base station (BS) or subscriber station (SS) is intended to transmit.

radio path redundancy: The ability to provide alternative paths between base stations, relay stations, and subscriber stations.

random temporary key (RTK): The temporary key sent over-the-air, to be cross-checked with the key contained in the request primitive (15.6.5.2) received by the BS that originally sent it over-the-air. RTK is used to obstruct the coexistence requests from unauthenticated terminals.

regulatory threshold: A value (in dBm) of a signal level, as defined by the regulatory rules, above which the receiver has to initiate an action.

relay link (R-link): A radio link between an MR-BS and an RS or between a pair of RSs. This can be a relay uplink or downlink.

relay station (RS): A generalized equipment set, dependent on a multihop relay base station (MR-BS) providing connectivity, to other RSs or subscriber stations (SS). An RS may also provide management and control of subordinate RSs or SSs. The air interface between an RS and an SS is identical to the air interface between a BS and an SS. See also: multihop relay base station (MR-BS), base station (BS), subscriber station (SS).

relay zone: A portion of a frame used for the relay link.

round-trip delay (RTD): The round-trip delay time between communicating stations (i.e., such as between an RS and its superordinate station).

RS frame: Frame structure for DL/UL transmission/reception by RS.

RS receive/transmit transition gap (RSRTG): The minimum receive-to-transmit turnaround gap required at an RS. RSRTG is measured from the time of the last sample of the received burst to the first sample of the transmitted burst at the antenna port of the RS.

RS transmit/receive transition gap (RSTTG): The minimum transmit-to-receive turnaround gap required at an RS. RSTTG is measured from the time of the last sample of the transmitted burst to the first sample of the received burst at the antenna port of the RS.

scanning interval: A time period intended for the mobile station (MS) to monitor neighbor base stations (BSs) to determine the suitability of the BSs as targets for handover (HO).

scheduling RS: A relay station that serves as a scheduling station; i.e., a non-transparent RS with unique BSID and operating in distributed scheduling mode.

scheduling station: In centralized scheduling mode, the scheduling station is always the MR-BS. In distributed scheduling mode, the scheduling station of a given MS/RS is the first station along the route to the MR-BS that transmits MAPs; i.e., either a non-transparent RS or the MR-BS itself.

secondary management connection: A connection that may be established during subscriber station (SS) registration that is used to transport standards-based [e.g, Simple Network Management Protocol (SNMP), Dynamic Host Configuration Protocol (DHCP)] messages.

security association (SA): The set of security information that a base station (BS) and one or more of its client subscriber stations (SSs) share in order to support secure communications. This shared information includes traffic encryption keys (TEKs) and cipher block chaining (CBC) initialization vectors (IVs).
security association identifier (SAID): An identifier shared between the base station (BS) and subscriber station (SS) that uniquely identifies a security association (SA). The SAID is unique within MS. The uniqueness of this identifier shall be guaranteed by {MS MAC Address, SAID} pair.

security zone (SZ): A group consisting of one or more RSs and the MR-BS that share key material for the protection of MAC management messages produced and processed by members of the group.

security zone key (SZK): A group key shared by the MR-BS and a group of RSs within the same security zone. The SZK is a head of key hierarchy used to satisfy the security requirements such as integrity protection for MAC management messages within a defined security zone.

service access point (SAP): The point in a protocol stack where the services of a lower layer are available to its next higher layer.

service data unit (SDU): The data unit exchanged between two adjacent protocol layers. On the downward direction, it is the data unit received from the previous higher layer. On the upward direction, it is the data unit sent to the next higher layer.

NOTE—See Figure 3-1.

service flow (SF): A unidirectional flow of medium access control layer (MAC) service data units (SDUs) on a connection that is provided a particular quality of service (QoS).

service flow identifier (SFID): A 32-bit quantity that uniquely identifies a service flow to the subscriber station (SS).

serving base station (BS): For any mobile station (MS), the BS with which the MS has most recently completed registration at initial network-entry or during a handover (HO).

Shared subframe: The MAC Frame where all the systems of a coexistence community may operate in parallel. The operation during this frame may require limitations on the transmit power.

Slave subframe: That part of the MAC frame coinciding with the Master subframe in which all systems (other than the Master) of the coexistence community have restricted operation.

Slave system: A specific system that operates during the Slave subframe. This system shall not create interference to the Master systems that operate during its Master subframe.

small BS (SBS): A BS operating in a multi-tier network, typically at a lower-power tier than a BS that is not an SBS, with additional functionality related to Idle Mode, BS power management, and/or CSG support.

source base station (BS): The BS that initiates an intersystem communication procedure.

specific spectrum user (SSU): A service specifically identified in regulation as requiring protection from harmful interference. These systems are given a priority from a regulatory point of view within a given frequency band.

STC layer: OFDMA Space Time Coding information-flow fed to the STC encoder as an input. The number of STC layers in a system with vertical encoding is one, while in horizontal encoding, it depends on the number of encoding/modulation paths. This term may be used interchangeably with the word layer when used in the context of OFDMA STC.

STC stream: OFDMA Space Time Coding information path encoded by the STC encoder that is passed to subcarrier mapping and sent through one antenna, or passed on to the beamformer. The number of STC
streams in both vertical and horizontal encoding systems is the same as the number of output paths of the STC encoder. This term may be used interchangeably with the word *stream* when used in the context of OFDMA STC.

STR RS: A non-transparent relay station capable of performing STR relaying.

subcarrier index: An index number identifying a particular used subcarrier in an orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) signal. Subcarrier indices are greater than or equal to zero.

subscriber station (SS): A generalized equipment set providing connectivity between subscriber equipment and a base station (BS).

subscriber station receive/transmit gap (SSRTG): The minimum receive-to-transmit turnaround gap. SSRTG is measured from the time of the last sample of the received burst to the first sample of the transmitted burst at the antenna port of the SS.

subscriber station transmit/receive gap (SSTTG): The minimum transmit-to-receive turnaround gap. SSTTG is measured from the time of the last sample of the transmitted burst to the first sample of the received burst at the antenna port of the SS.

system: A base station (BS) and its subscriber stations (SSs).

target base station (BS): The BS with which a mobile station (MS) intends to be registered at the end of a handover (HO).

time division duplex (TDD): A duplex scheme where uplink (UL) and downlink (DL) transmissions occur at different times but may share the same frequency.

time division multiple access (TDMA) burst: A contiguous portion of the uplink (UL) or downlink (DL) using physical layer (PHY) parameters, determined by the downlink interval usage code (DIUC) or uplink interval usage code (UIUC), that remain constant for the duration of the burst. TDMA bursts are separated by preambles and are separated by gaps in transmission if subsequent bursts are from different transmitters.

time division multiplexing (TDM) burst: A contiguous portion of a TDM data stream using physical layer (PHY) parameters, determined by the downlink interval usage code (DIUC), that remain constant for the duration of the burst. TDM bursts are not separated by gaps or preambles.

transparent RS: A relay station that does not transmit DL frame-start preamble, FCH, MAP message(s) or channel descriptor (DCD/UCD) messages.

transparent zone: A portion of the DL subframe in the MR-BS/RS frame for an RS operating in the transparent mode used for MR-BS/RS to MS transmission. A DL subframe may, or may not, have a transparent zone.

transport connection: A connection used to transport user data. It does not include any traffic over the basic, primary, or secondary management connections. A fragmentable transport connection is a connection that allows fragmentation of service data units (SDUs).

transport connection identifier (CID): A unique identifier taken from the CID address space that uniquely identifies the transport connection. All user data traffic is carried on transport connections, even for service flows that implement connectionless protocols, such as Internet Protocol (IP). An active or admitted service flow [identified by a service flow identifier (SFID)] maps to a Transport CID assigned by the base station (BS).
TTR RS: A non-transparent relay station that performs TTR relaying.

tunnel CID (T-CID): An identifier taken from the connection identifier (CID) space that uniquely identifies a transport tunnel connection.

turbo decoding: Iterative decoding, using soft inputs and soft outputs.

type/length/value (TLV): A formatting scheme that adds a tag to each transmitted parameter containing the parameter type (and implicitly its encoding rules) and the length of the encoded parameter.

U Interface: The management and control interface that exists between the SS and the BS over the air interface.

UL access zone: A portion of the UL subframe in the MR-BS/RS frame used for MS or RS (except TTR RS in TDD mode) to MR-BS/RS transmission. A frame may have no UL access zone, or the UL access zone may consist of the entire uplink subframe, depending on the method used to separate the transmissions on the access and relay links.

UL relay zone: A portion of the UL subframe in the MR-BS/RS frame used for RS to MR-BS/RS transmission. A frame may have no UL relay zone, or the UL relay zone may consist of the entire uplink subframe, depending on the method used to separate the transmissions on the access and relay links.

Uncoordinated Coexistence Mechanism: A mechanism by which a radio system attempts to achieve coexistence without coordination with other spectrum users.

uplink (UL): The direction from a subscriber station (SS) to the base station (BS).

uplink channel descriptor (UCD): A medium access control layer (MAC) message that describes the physical layer (PHY) characteristics of an uplink (UL).

uplink interval usage code (UIUC): An interval usage code specific to an uplink (UL).

uplink map (UL-MAP): A set of information that defines the entire access for a scheduling interval.

user data: Protocol data units (PDUs) of any protocol above a service-specific convergence sublayer (CS) received over the CS service access point (SAP).

wireless access: End-user radio connection(s) to core networks.

WirelessMAN-CX: The designation used to describe the realization that adds coordinated coexistence mechanisms to systems operating below 11 GHz in license-exempt bands.

WirelessMAN-UCP: The designation used to describe the realization that adds uncoordinated coexistence mechanisms to systems operating below 11 GHz in license-exempt bands.
4. Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-DES</td>
<td>triple data encryption standard</td>
</tr>
<tr>
<td>AAS</td>
<td>adaptive antenna system</td>
</tr>
<tr>
<td>AC</td>
<td>authentication control</td>
</tr>
<tr>
<td>ACLR</td>
<td>Adjacent Channel Leakage Ratio</td>
</tr>
<tr>
<td>ACM</td>
<td>account management</td>
</tr>
<tr>
<td>ACS</td>
<td>Adaptive Channel Selection</td>
</tr>
<tr>
<td>ADPD</td>
<td>Advertisement Discovery Policy Descriptor</td>
</tr>
<tr>
<td>AES</td>
<td>advanced encryption standard</td>
</tr>
<tr>
<td>AGC</td>
<td>automatic gain control</td>
</tr>
<tr>
<td>AK</td>
<td>authorization key</td>
</tr>
<tr>
<td>AKID</td>
<td>authorization key identifier</td>
</tr>
<tr>
<td>ALTCH</td>
<td>alternative channel</td>
</tr>
<tr>
<td>AMC</td>
<td>adaptive modulation and coding</td>
</tr>
<tr>
<td>AMS</td>
<td>advanced mobile station (specified in IEEE Std 802.16.1-2012)</td>
</tr>
<tr>
<td>ARQ</td>
<td>automatic repeat request</td>
</tr>
<tr>
<td>ASA</td>
<td>authentication and service authorization</td>
</tr>
<tr>
<td>ASR</td>
<td>anchor switch reporting</td>
</tr>
<tr>
<td>ATDD</td>
<td>adaptive time division duplexing</td>
</tr>
<tr>
<td>ATM</td>
<td>asynchronous transfer mode</td>
</tr>
<tr>
<td>BCC</td>
<td>block convolutional code</td>
</tr>
<tr>
<td>BE</td>
<td>best effort</td>
</tr>
<tr>
<td>BER</td>
<td>bit error ratio</td>
</tr>
<tr>
<td>BPSK</td>
<td>binary phase shift keying</td>
</tr>
<tr>
<td>BR</td>
<td>bandwidth request</td>
</tr>
<tr>
<td>BS</td>
<td>base station</td>
</tr>
<tr>
<td>BSD</td>
<td>base station descriptor</td>
</tr>
<tr>
<td>BSIS</td>
<td>Base Station Identification Server</td>
</tr>
<tr>
<td>BSN</td>
<td>block sequence number</td>
</tr>
<tr>
<td>BTC</td>
<td>block turbo code</td>
</tr>
<tr>
<td>BW</td>
<td>bandwidth (abbreviation used only in equations, tables, and figures)</td>
</tr>
<tr>
<td>BWA</td>
<td>broadband wireless access</td>
</tr>
<tr>
<td>BWAA</td>
<td>bandwidth allocation/access</td>
</tr>
<tr>
<td>C/I</td>
<td>carrier-to-interference ratio</td>
</tr>
<tr>
<td>C/N</td>
<td>carrier-to-noise ratio</td>
</tr>
<tr>
<td>CA</td>
<td>certification authority</td>
</tr>
<tr>
<td>CBC</td>
<td>cipher block chaining</td>
</tr>
<tr>
<td>CBC-MAC</td>
<td>cipher block chaining message authentication code</td>
</tr>
<tr>
<td>CC</td>
<td>confirmation code</td>
</tr>
<tr>
<td>CCA</td>
<td>Clear Channel Assessment</td>
</tr>
<tr>
<td>CCD</td>
<td>Candidate Channel Determination</td>
</tr>
<tr>
<td>CCH</td>
<td>control subchannel</td>
</tr>
<tr>
<td>CCI</td>
<td>co-channel interference</td>
</tr>
<tr>
<td>CCM</td>
<td>CTR mode with CBC-MAC</td>
</tr>
<tr>
<td>CCMFA</td>
<td>Candidate Channel and Master Frame Assessment</td>
</tr>
</tbody>
</table>
CCS | common channel signaling
CCV | clock comparison value
CDMA | code division multiple access
ChCtrFr | channel center frequency
ChID | channel identifier
CID | connection identifier
CINR | carrier-to-interference-and-noise ratio
CIR | channel impulse response
CLP | cell loss priority
CMAC | cipher-based message authentication code
CMI | Coexistence Messaging Interval
CoNBR | coexistence neighbor
CP | cyclic prefix
CPS | common part sublayer
CQI | channel quality information
CQICH | channel quality information channel
CR | cognitive radio
CRC | cyclic redundancy check
CS | convergence sublayer
CSCF | centralized scheduling configuration
CSCH | centralized scheduling
CSG | closed subscriber group
CSI | Coexistence Signaling Interval
CSIN | Coexistence Signaling Interval Number
CSIT | channel state information at the transmitter
CT | cooperative transmission
CTC | convolutional turbo code
CT-CX | credit token-based coexistence
CTG | CSI Transmission GAP
CTR | counter mode encryption
CW | contention window
CX | Coexistence
CX_CMI_D | Coexistence Message Interval Downlink
CX_CMI_U | Coexistence Message Interval Uplink
CXCBI | Coordinated Coexistence Contention-Based Interval
CX-CBP | Coordinated Coexistence Contention-Based Protocol
CXCC | Coexistence Control Channel
CXCW | coexistence contention window
CXP | Coexistence Protocol
CXSBI | Coordinated Scheduled-Based Interval
DCS | Dynamic Channel Selection
DAMA | demand assigned multiple access
DARS | digital audio radio satellite
dBi | decibels of gain relative to the 0 dB gain of a free-space isotropic radiator
dBm | decibels relative to 1 mW
DCD | downlink channel descriptor
DES data encryption standard. This reference is withdrawn.
DFS dynamic frequency selection
DHCP Dynamic Host Configuration Protocol
DID deregistration identifier (specified in IEEE Std 802.16.1-2012)
DIUC downlink interval usage code
DL downlink
DLFP downlink frame prefix
DSA dynamic service addition
DSC dynamic service change
DSCH distributed scheduling
DSCP differentiated services codepoint
DSD dynamic service deletion
DSx dynamic service addition, change, or deletion
D-TDOA Downlink Time Difference Of Arrival
EAP extensible authentication protocol
EC encryption control
ECB electronic code book
ECRTP a IP-header-compression CS PDU format (IETF RFC 3545)
EDF encrypt-decrypt-encrypt
EESS earth exploratory satellite system
EIK EAP Integrity Key
EIRP effective isotropic radiated power
EKS encryption key sequence
EOF End of Frame (of the CSI message)
EQP extended quite period
EVM error vector magnitude
FA frequency assignment
FBIS forwarding between infrastructure stations
FBSS fast base station switching
FC fragmentation control
FCZ forwarding control zone
FCC Federal Communications Commission
FCH frame control header
FDD frequency division duplex or duplexing
FEC forward error correction
FFSH fast-feedback allocation subheader
FFT fast Fourier transform
FHDC frequency hopping diversity coding
FPC fast power control
FRS fixed relay station
FSH fragmentation subheader
FSN fragment sequence number
FSS fixed satellite service
FUSC full usage of subchannels
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPCS</td>
<td>Generic Packet Convergence Sublayer</td>
</tr>
<tr>
<td>GF</td>
<td>galois field</td>
</tr>
<tr>
<td>GKEK</td>
<td>group key encryption key</td>
</tr>
<tr>
<td>GMSH</td>
<td>grant management subheader</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>GS</td>
<td>guard symbol</td>
</tr>
<tr>
<td>GTEK</td>
<td>group traffic encryption key</td>
</tr>
<tr>
<td>HARQ</td>
<td>hybrid ARQ</td>
</tr>
<tr>
<td>HCS</td>
<td>header check sequence</td>
</tr>
<tr>
<td>HEC</td>
<td>header error check</td>
</tr>
<tr>
<td>H-FDD</td>
<td>half-duplex frequency division duplex</td>
</tr>
<tr>
<td>HMAC</td>
<td>hashed message authentication code</td>
</tr>
<tr>
<td>HO</td>
<td>handover</td>
</tr>
<tr>
<td>HR</td>
<td>handover ranging</td>
</tr>
<tr>
<td>HR</td>
<td>high reliability</td>
</tr>
<tr>
<td>HT</td>
<td>header type</td>
</tr>
<tr>
<td>HUMAN</td>
<td>high-speed unlicensed metropolitan area network</td>
</tr>
<tr>
<td>I</td>
<td>inphase</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority</td>
</tr>
<tr>
<td>IBS</td>
<td>initializing base station</td>
</tr>
<tr>
<td>ICSI</td>
<td>Initialization Coexistence Signaling Interval</td>
</tr>
<tr>
<td>IE</td>
<td>information element</td>
</tr>
<tr>
<td>IEB</td>
<td>Interference Evaluation Burst</td>
</tr>
<tr>
<td>IEBBSn</td>
<td>Nth Interference Evaluation Burst of a BS</td>
</tr>
<tr>
<td>IEBSSn</td>
<td>Nth Interference Evaluation Burst over all the SS associated with a BS</td>
</tr>
<tr>
<td>IFFT</td>
<td>inverse fast Fourier transform</td>
</tr>
<tr>
<td>IM</td>
<td>interference management</td>
</tr>
<tr>
<td>IMM</td>
<td>idle mode management</td>
</tr>
<tr>
<td>INR</td>
<td>interference-to-noise ratio</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IR</td>
<td>initial ranging</td>
</tr>
<tr>
<td>IS</td>
<td>infrastructure station</td>
</tr>
<tr>
<td>IV</td>
<td>initialization vector</td>
</tr>
<tr>
<td>IWF</td>
<td>interworking function</td>
</tr>
<tr>
<td>KEK</td>
<td>key encryption key</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LBS</td>
<td>location based services</td>
</tr>
<tr>
<td>LBT</td>
<td>listen-before-talk</td>
</tr>
<tr>
<td>LBT-TXOP</td>
<td>Transmission Opportunity depending on LBT result</td>
</tr>
<tr>
<td>LDPC</td>
<td>low-density parity check</td>
</tr>
<tr>
<td>LE</td>
<td>license-exempt</td>
</tr>
<tr>
<td>LFSR</td>
<td>linear feedback shift register</td>
</tr>
<tr>
<td>LLC</td>
<td>logical link control</td>
</tr>
<tr>
<td>LOS</td>
<td>line-of-sight</td>
</tr>
<tr>
<td>LSB</td>
<td>least significant bit</td>
</tr>
<tr>
<td>M2M</td>
<td>machine-to-machine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>M2MCID</td>
<td>M2M multicast connection identifier</td>
</tr>
<tr>
<td>MAC</td>
<td>medium access control layer</td>
</tr>
<tr>
<td>MAK</td>
<td>MBS authorization key</td>
</tr>
<tr>
<td>MAN</td>
<td>metropolitan area network</td>
</tr>
<tr>
<td>MBS</td>
<td>multicast and broadcast service</td>
</tr>
<tr>
<td>MCID</td>
<td>multicast CID (see Table 8-285)</td>
</tr>
<tr>
<td>MCS</td>
<td>modulation coding scheme</td>
</tr>
<tr>
<td>MDHO</td>
<td>macro diversity handover</td>
</tr>
<tr>
<td>MDS</td>
<td>multipoint distribution service</td>
</tr>
<tr>
<td>MGTEK</td>
<td>MBS group traffic encryption key</td>
</tr>
<tr>
<td>MIB</td>
<td>management information base</td>
</tr>
<tr>
<td>MIC</td>
<td>message integrity check</td>
</tr>
<tr>
<td>MIH</td>
<td>media independent handover</td>
</tr>
<tr>
<td>MIHF</td>
<td>MIH Function</td>
</tr>
<tr>
<td>MIMO</td>
<td>multiple input multiple output</td>
</tr>
<tr>
<td>MMDS</td>
<td>multichannel multipoint distribution service</td>
</tr>
<tr>
<td>MPEG</td>
<td>moving pictures experts group</td>
</tr>
<tr>
<td>MR-BS</td>
<td>multihop relay base station</td>
</tr>
<tr>
<td>MRS</td>
<td>mobile relay station</td>
</tr>
<tr>
<td>MS</td>
<td>mobile station</td>
</tr>
<tr>
<td>MSB</td>
<td>most significant bit</td>
</tr>
<tr>
<td>MSK</td>
<td>master session key</td>
</tr>
<tr>
<td>NCFG</td>
<td>network configuration</td>
</tr>
<tr>
<td>NCMS</td>
<td>network control and management system</td>
</tr>
<tr>
<td>NCMS(BS)</td>
<td>network control and management system at the BS side (network side)</td>
</tr>
<tr>
<td>NCMS(SS/MS)</td>
<td>network control and management system at the SS/MS side</td>
</tr>
<tr>
<td>NEM</td>
<td>network entry management</td>
</tr>
<tr>
<td>NENT</td>
<td>network entry</td>
</tr>
<tr>
<td>NLOS</td>
<td>non-line-of-sight</td>
</tr>
<tr>
<td>NNI</td>
<td>network-to-network interface (or network node interface)</td>
</tr>
<tr>
<td>NRM</td>
<td>network reference model</td>
</tr>
<tr>
<td>nrtPS</td>
<td>non-real-time polling service</td>
</tr>
<tr>
<td>NSP</td>
<td>network service provider</td>
</tr>
<tr>
<td>NTI</td>
<td>Network Time Intervals</td>
</tr>
<tr>
<td>NTI_S</td>
<td>Network Time Interval Slots</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NURBC</td>
<td>Neighborhood Update Request BroadCast</td>
</tr>
<tr>
<td>OBS</td>
<td>operating base station</td>
</tr>
<tr>
<td>OCSI</td>
<td>Operation Coexistence Signaling Interval</td>
</tr>
<tr>
<td>OFDM</td>
<td>orthogonal frequency division multiplexing</td>
</tr>
<tr>
<td>OFDMA</td>
<td>orthogonal frequency division multiple access</td>
</tr>
<tr>
<td>OID</td>
<td>object identifier</td>
</tr>
<tr>
<td>PAK</td>
<td>primary authorization key</td>
</tr>
<tr>
<td>PAPR</td>
<td>peak to average power ratio</td>
</tr>
<tr>
<td>PBR</td>
<td>piggyback request</td>
</tr>
<tr>
<td>PDU</td>
<td>protocol data unit</td>
</tr>
</tbody>
</table>
PER packet error ratio
PHS payload header suppression
PHSF Payload Header Suppression field
PHSI payload header suppression index
PHSM payload header suppression mask
PHSS payload header suppression size
PHSV payload header suppression valid
PHY physical layer
PKM privacy key management
PLD PayLoad (of the CSI message)
PM poll-me bit
PMD physical medium dependent
PMK pairwise master key
PMP point-to-multipoint
PN packet number
PPDR public protection and disaster relief
PPP Point-to-Point Protocol
PRBS pseudo-random binary sequence
PS physical slot
PSC power saving class
PTI payload type indicator
PtP point to point
PUSC partial usage of subchannels
PUSC-ASCA partial usage of subchannels – adjacent subcarrier allocation
PVC permanent virtual circuit
Q quadrature
QAM quadrature amplitude modulation
QoS quality of service
QP quiet period
QPSK quadrature phase-shift keying
R-ACK relay ACK
RAIS Radio Application Identification Server
RCG Receive CSI GAP
R-DL relay downlink
REQ request
R-FCH relay zone frame control header
RLAN Radio Local Area Network
R-MAP relay zone MAP
RNG ranging
ROHC an IP-header-compression CS PDU format
[IETF RFC 3095 (updated by RFC 4815 [B44])]
RRA radio resource agent
RRC radio resource controller
RRM radio resource management
R-RTI relay receive/transmit transition interval
RRU renting resource unit
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Reed-Solomon</td>
</tr>
<tr>
<td>RS</td>
<td>relay station</td>
</tr>
<tr>
<td>RSP</td>
<td>response</td>
</tr>
<tr>
<td>RSS</td>
<td>receive signal strength</td>
</tr>
<tr>
<td>RSSI</td>
<td>receive signal strength indicator</td>
</tr>
<tr>
<td>RTD</td>
<td>round-trip delay</td>
</tr>
<tr>
<td>RTG</td>
<td>receive/transmit transition gap</td>
</tr>
<tr>
<td>RTK</td>
<td>random temporary key</td>
</tr>
<tr>
<td>rTPS</td>
<td>real-time polling service</td>
</tr>
<tr>
<td>R-TTI</td>
<td>relay transmit/receive transition interval</td>
</tr>
<tr>
<td>R-UL</td>
<td>relay uplink</td>
</tr>
<tr>
<td>Rx</td>
<td>receive (abbreviation not used as verb)</td>
</tr>
<tr>
<td>RxDS</td>
<td>receiver delay spread clearing interval</td>
</tr>
<tr>
<td>R-Zone</td>
<td>relay zone</td>
</tr>
<tr>
<td>SA</td>
<td>security association</td>
</tr>
<tr>
<td>SAID</td>
<td>security association identifier</td>
</tr>
<tr>
<td>SAP</td>
<td>Service Access Point</td>
</tr>
<tr>
<td>SAR</td>
<td>synthetic aperture radar</td>
</tr>
<tr>
<td>SC</td>
<td>single carrier</td>
</tr>
<tr>
<td>SDMA</td>
<td>spatial division multiple access</td>
</tr>
<tr>
<td>SDU</td>
<td>service data unit</td>
</tr>
<tr>
<td>SF</td>
<td>service flow</td>
</tr>
<tr>
<td>SFID</td>
<td>service flow identifier</td>
</tr>
<tr>
<td>SFM</td>
<td>service flow management</td>
</tr>
<tr>
<td>SHA</td>
<td>secure hash algorithm</td>
</tr>
<tr>
<td>SI</td>
<td>slip indicator</td>
</tr>
<tr>
<td>SIQ</td>
<td>service information query</td>
</tr>
<tr>
<td>SM</td>
<td>spatial multiplexing</td>
</tr>
<tr>
<td>SN</td>
<td>sequence number</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SOF</td>
<td>Start of Frame (of CSI message)</td>
</tr>
<tr>
<td>SPOF</td>
<td>single point of failure</td>
</tr>
<tr>
<td>SS</td>
<td>subscriber station</td>
</tr>
<tr>
<td>SSID</td>
<td>subscriber station identification (MAC address)</td>
</tr>
<tr>
<td>SSM</td>
<td>subscriber station management</td>
</tr>
<tr>
<td>SSTG</td>
<td>subscriber station transition gap</td>
</tr>
<tr>
<td>SSU</td>
<td>specific spectrum user</td>
</tr>
<tr>
<td>SSURF</td>
<td>Subscriber Station Uplink Radio Frequency</td>
</tr>
<tr>
<td>STC</td>
<td>space time coding</td>
</tr>
<tr>
<td>STID</td>
<td>Station Identifier (specified in IEEE Std 802.16.1-2012)</td>
</tr>
<tr>
<td>STR</td>
<td>simultaneous transmit and receive relaying</td>
</tr>
<tr>
<td>STTD</td>
<td>space time transmit diversity</td>
</tr>
<tr>
<td>SVC</td>
<td>switched virtual circuit</td>
</tr>
<tr>
<td>TCM</td>
<td>trellis coded modulation</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
</tbody>
</table>
TCS transmission convergence sublayer
TDD time division duplex or duplexing
TDM time division multiplexing
TDMA time division multiple access
TDOA time difference of arrival
TDU tunnel data unit
TEK traffic encryption key
TFTP Trivial File Transfer Protocol
TLV type/length/value
TPC Transmit Power Control
TTG transmit/receive transition gap
TTR time-division transmit and receive relaying
TUSC tile usage of subchannels
Tx transmit (abbreviation not used as verb)
UCD uplink channel descriptor
UCP Uncoordinated Coexistence Protocol
UDP User Datagram Protocol
UEP unequal error protection
UGS unsolicited grant service
UIUC uplink interval usage code
UL uplink
UNI user-to-network interface (or user-network interface)
U-NII unlicensed national information infrastructure
UTC coordinated universal time
U-TDOA uplink time difference of arrival
UW unique word
VC virtual channel
VCI virtual channel identifier
VLAN virtual local area network
VP virtual path
VPI virtual path identifier
WirelessHUMAN Wireless High-speed Unlicensed Metropolitan Area Networks
WirelessMAN Wireless Metropolitan Area Networks
WirelessMAN-CX Wireless Metropolitan Access Network Coexistence
WirelessMAN-UCP Wireless Metropolitan Access Network Uncoordinated Coexistence Protocol
WLAN wireless local area network
XOR exclusive-or
5. MAC common part sublayer

5.1 Data/Control plane

5.1.1 Addressing and connections

5.1.1.1 Point-to-multipoint (PMP)

Each air interface in an SS shall have a 48-bit universal MAC address, as defined in IEEE Std 802®. This address uniquely defines the air interface of the SS. It is used during the initial ranging process to establish the appropriate connections for an SS. It is also used as part of the authentication process by which the BS and SS each verify the identity of the other. The definition and usage of the MAC address defined above for the SS and the BS shall be applicable for the RS and the MR-BS, respectively.

Connections are identified by a 16-bit CID. At SS initialization, two pairs of management connections, basic connections (UL and DL) and primary management connections (UL and DL), shall be established between the SS and the BS, and a third pair of management connections (secondary management, DL and UL) may be optionally generated. The three pairs of management connections reflect the fact that there are inherently three different levels of QoS for management traffic between an SS and the BS. The basic connection is used by the BS MAC and SS MAC to exchange short, time-urgent MAC management messages. The primary management connection is used by the BS MAC and SS MAC to exchange longer, more delay-tolerant MAC management messages. Table 6-55 specifies which MAC management messages are transferred on which of these two connections. In addition, it also specifies which MAC management messages are transported on the broadcast connection. Finally, the secondary management connection is used by the BS and SS to transfer delay-tolerant, standards-based [Dynamic Host Configuration Protocol (DHCP), Trivial File Transfer Protocol (TFTP), SNMP, etc.] messages. Messages carried on the secondary management connection may be packed and/or fragmented. For the OFDM, and OFDMA PHYs, management messages shall have CRC. Use of the secondary management connection is required only for managed SS. The identification, establishment, and usage of the connection defined above for the SS and the BS shall be applicable for the RS and the MR-BS, respectively. In addition, the multicast management connection is used by the MR-BS to transfer MAC management messages to a group of RSs.

The CIDs for these connections shall be assigned in the RNG-RSP, REG-RSP, RS_Config-CMD (RS only), or MOB_BSHO-REQ/RSP for pre-allocation in handover. When CID pre-allocation is used during HO, a primary management CID may be derived based on Basic CID without assignment in the messages (see 6.3.20.2.11). The message dialogs provide three CID values. The same CID value is assigned to both members (UL and DL) of each connection pair.

For bearer services, the BS and the SS may initiate the set-up of service flows based upon the provisioning information. The registration of an SS, or the modification of the services contracted at an SS, stimulates the higher layers of the BS and/or the SS to initiate the setup of the service flows. When admitted or active, service flows are uniquely associated with transport connections. MAC management messages shall never be transferred over transport connections. Bearer or data services shall never be transferred on the basic, primary, or secondary management connections.

Bearer connection CID reassignments during handover or network reentry shall be sent using the REG-RSP encodings TLV in the RNG-RSP message, the REG-RSP message, or reassigned autonomously without explicit assignment in any message (see 6.3.20.2.11).

Requests for transmission are based on these CIDs, since the allowable bandwidth may differ for different connections, even within the same service type. For example, an SS unit serving multiple tenants in an office building would make requests on behalf of all of them, though the contractual service limits and other connection parameters may be different for each of them.
Many higher layer sessions may operate over the same wireless CID. For example, many users within a company may be communicating with Transmission Control Protocol (TCP)/IP to different destinations, but since they all operate within the same overall service parameters, all of their traffic is pooled for request/grant purposes. Since the original local area network (LAN) source and destination addresses are encapsulated in the payload portion of the transmission, there is no problem in identifying different user sessions.

The type of service and other current parameters of a service are implicit in the CID; they may be accessed by a lookup indexed by the CID.

5.1.1.2 Multihop relay

Addressing and connections as perceived by an SS served by an RS or MR-BS are defined in the same manner as in 5.1.1.1. This subclause specifies the additional addressing and connection definitions that apply to multihop relay systems. A non-transparent RS shall be assigned a Base Station ID. The format of the Base Station ID is defined in 6.3.2.3.2.

Connections may span multiple hops and may pass through one or more intermediate RSs. These connections shall be identified by the connection ID (CID) as specified in 5.1.1.1 and the CIDs shall be unique within an MR cell. All the CID connection types specified in PMP mode shall be supported between the MR-BS and MS.

An additional type of connection called a tunnel connection may be established between the MR-BS and an access RS, or between the MR-BS and a superordinate station of an RS group (see 5.1.7). Tunnel connections shall be used for transporting relay MAC PDUs from one or more connections between the MR-BS and an access RS and may pass through one or more intermediate RSs. It is not required that all connections shall pass through a tunnel connection. MAC PDUs from connections that do not pass through a tunnel are forwarded based on the CID of the connection. There shall be two types of tunnel connections. Management tunnel connections, identified using the MT-CID, shall be used exclusively for transporting MAC PDUs from management (basic, primary, or secondary) connections. Transport tunnel connections, identified using the T-CID, shall be used exclusively for transporting MAC PDUs from transport connections. The MR-BS shall allocate the T-CID and MT-CID using the DSA messages. MT-CID is bidirectional and T-CID is unidirectional.

5.1.1.2.1 Addressing scheme for relaying

In the procedure of network entry and initialization for a new RS, the MR-BS may pre-allocate a range of management CIDs to an RS. The operation for pre-allocation of these CIDs is described in 6.3.9.18.2. One or more BS in an area of the network may be grouped into an M2M zone and identified by an M2M GROUP ZONE ID. A BS may belong to at most one M2M group zone. The BS may broadcast the M2M GROUP ZONE ID of the zone to which it belongs in the DCD message.

The M2M multicast connection ID (M2MCID) uniquely identifies a downlink multicast service flow shared by a group of M2M devices within an M2M zone. Implicitly, it is also used to identify the group of M2M devices that share the downlink multicast service flow. An M2M device may share more than one downlink multicast service flow each identified by an M2MCID. All M2MCIDs that are assigned to an M2M device belong to the same M2M group zone.

The M2MCID is assigned to a service flow of an M2M device during the DSA procedure and released during the DSD procedure or an explicit network exit (e.g., power down location update). The assigned M2MCID shall be retained by an M2M device even in idle mode unless the M2M device exits from the network or the network explicitly deletes the service flow associated with the M2MCID. The M2MCID may be reassigned during normal operation mode and idle mode. During normal operation, the M2MCID may be changed and deleted by DSC and DSD procedures respectively.
During idle mode, the M2MCID may be changed by a location update procedure or during network reentry through the RNG-RSP message. The BS may trigger the group location update via paging message. In normal operation, the BS may update the M2MCID for a M2M device group using the MAC Group Management Control (MGMC) message.

When the M2M device performs the timer-based location update, if the BS needs to update the M2MCID of M2M device, the BS may send a RNG-RSP message with an M2MCID Update TLV, which contains a new M2MCID value in response to the RNG-REQ message.

A BS may use the MOB_PAG-ADV message to indicate the update of the M2MCID and its new value to all the M2M devices in a group. When an idle mode M2M device that belongs to the M2M device group (identified by its M2MCID) receives a paging message containing an M2MCID TLV identifying one of its service flows and an Action Code TLV with value set to 0b11, this M2M device shall update the M2MCID based on the value indicated by M2MCID reassignment TLV (see 11.17.5).

After receiving the updated M2MCID value, the M2M device shall send an acknowledgment (ACK) to the BS.

If the BS does not receive an acknowledgment from some of the M2M devices, it may trigger location update in the next paging cycle of those M2M devices by sending MOB_PAG-ADV message containing MS MAC Address hash and it may send a RNG-RSP message with an M2MCID Update TLV containing the new M2MCID to each of them during the location update procedure.

The BS may use the M2M Group MAC Control (MGMC) message with the M2MCIDs to send the information to multiple M2M devices. The M2M device shall respond to acknowledge this message with M2M ACK MAC Control (MAMC) message.

The information of the neighboring M2M Group Zones may be advertised by BSs of a given M2M Group Zone in MOB_NBR-ADV message. Neighboring M2M Group Zones implies the M2M Group Zones to which the neighboring BSs belong are different from the M2M Group Zone to which the serving BS belongs.

The MOB_NBR-ADV message contains M2M_GROUP_ZONE_ID of the neighboring M2M Group Zones along with the mappings of M2MCID from the M2M Group Zone of the serving BS to one or more neighboring M2M Group Zones. When an M2M device changes its preferred or serving BS to a BS that belongs to a different M2M Group Zone than the current serving BS, it may have the M2MCID mapping information for the M2M Group Zone of that BS, if it has already received the MOB_NBR-ADV.

The MOB_NBR-ADV message including M2M Group Zone information should be transmitted by the BSs that are situated at the M2M Group Zone boundaries.

5.1.3 MAC header formats

The MAC header formats are defined in Table 5-1 except for the MAC header formats for DL-MAP and UL-MAP MAC messages for channel bandwidth less than 1.25 MHz in which case the MAC header formats are defined in subclause 5.1.3.1.1.

There is one defined DL MAC header, which is the Generic MAC header, which begins each DL MAC PDU containing either MAC management messages or CS data. There are two defined UL MAC header formats. The first is the Generic MAC header that begins each MAC PDU containing either MAC management messages or CS data, where the header type (HT) is set to 0 as shown in Table 5-2. The second is the MAC header format without payload where HT is set to 1 as shown in Table 5-2. For the latter format, the header is not followed by any MAC PDU payload and CRC.
Table 5-1—MAC header formats

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size (bit)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Header() {</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HT</td>
<td>1</td>
<td>See below for context-dependent definitions.</td>
</tr>
<tr>
<td>EC</td>
<td>1</td>
<td>If HT = 1, EC = 0</td>
</tr>
<tr>
<td>if (HT == 0) {</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Type</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>ESF</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>CI</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>EKS</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Reserved</td>
<td>1</td>
<td>Shall be set to zero</td>
</tr>
<tr>
<td>LEN</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>}</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>else {</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Type</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>BR</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>}</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CID</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>HCS</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>}</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 5-2—MAC header HT and EC fields encoding

<table>
<thead>
<tr>
<th>HT</th>
<th>EC</th>
<th>MAC PDU type</th>
<th>Reference figure</th>
<th>Reference table</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Generic MAC header for DL and UL. MAC PDU with data payload, no encryption, with a 6-bit type field, see Table 5-4 for its type field encodings.</td>
<td>Figure 5-1</td>
<td>Table 5-3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Generic MAC header for DL and UL. MAC PDU with data payload, with encryption with a 6-bit type field, see Table 5-4 for its type field encodings.</td>
<td>Figure 5-1</td>
<td>Table 5-3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>DL: DL M2M MAC signaling header type I. MAC PDU without data payload, with a 3-bit type field, see Table 6-30 for type encoding definitions.</td>
<td>Figure 5-5, Figure 6-8, Figure 6-9–Figure 6-14</td>
<td>Table 5-6, Table 6-7, Table 6-8–Table 6-13, Table 6-30, Table 6-31</td>
</tr>
</tbody>
</table>
5.1.1.3.1 Generic MAC header

The Generic MAC header is illustrated in Figure 5-1.

Figure 5-1—Generic MAC header format

The fields of the Generic MAC header are defined in Table 5-3. Every header is encoded, starting with the HT and encryption control (EC) fields. The coding of these fields is such that the first byte of a MAC header shall never have the value of 0xFX, where “X” means “do not care.” This prevents false detection on the stuff byte used in the transmission convergence sublayer (TCS).

The ESF bit in the Generic MAC header indicates that the extended subheader is present. Using this field, a number of additional subheaders can be used within a MAC PDU. The extended subheader shall always appear immediately after the Generic MAC header and before all other subheaders. Contrary to the other subheaders, extended subheaders are not encrypted. When an entity transmits a MAC PDU without a payload, it shall set the EC bit in the Generic MAC header to 0, even if the connection on which it transmits the MAC PDU is associated with data encryption. When an entity receives a MAC PDU that does not contain a payload, it shall process this MAC PDU if the EC bit is set to 0, and should discard this MAC PDU if the EC bit is set to 1.
Table 5-3—Generic MAC header fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bit)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>1</td>
<td>Header type. Shall be set to zero.</td>
</tr>
</tbody>
</table>
| EC | 1 | Encryption control.
 0 = Payload is not encrypted or payload is not included.
 1 = Payload is encrypted. |
| Type | 6 | This field indicates the subheaders and special payload types present in the message payload. |
| ESF | 1 | Extended Subheader field. If ESF = 0, the extended subheader is absent. If ESF = 1, the extended subheader is present and shall follow the Generic MAC header immediately. (See 6.3.2.2.7.) The ESF is applicable both in the DL and in the UL. |
| CI | 1 | CRC indicator.
 1 = CRC is included in the PDU by appending it to the PDU payload after encryption, if any.
 0 = No CRC is included. |
| EKS | 2 | Encryption key sequence. The index of the traffic encryption key (TEK) and initialization vector (IV) used to encrypt the payload. This field is only meaningful if the EC field is set to 1. |
| RSV | 1 | Reserved |
| LEN | 11 | Length. The length in bytes of the MAC PDU including the MAC header and the CRC if present. |
| CID | 16 | Connection identifier. |
| HCS | 8 | Header check sequence. An 8-bit field used to detect errors in the header. The transmitter shall calculate the HCS value for the first five bytes of the cell header, and insert the result into the HCS field (the last byte of the MAC header). It shall be the remainder of the division (Modulo 2) by the generator polynomial \(g(D) = D^8 + D^2 + D + 1 \) of the polynomial \(D^8 \) multiplied by the content of the header excluding the HCS field. (Example: \([\text{HT EC Type}] = 0x80, BR = 0xAAAA, CID = 0x0F0F; \text{HCS would then be set to 0xD5}\). |

The definition of the Type field is indicated in Table 5-4.

Table 5-4—Type encodings

<table>
<thead>
<tr>
<th>Type bit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5 most significant bit (MSB)</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| #4 | ARQ feedback payload
 1 = present, 0 = absent |
| #3 | Extended type
 Indicates whether the present packing subheader (PSH) or fragmentation subheader (FSH) is extended for non-ARQ-enabled connections
 1 = Extended
 0 = Not extended
 For ARQ-enabled connections, this bit shall be set to 1. |
| #2 | Fragmentation subheader (FSH)
 1 = present, 0 = absent |
If the ARQ Feedback Payload bit in the MAC Type field (see Table 5-4) is set, the ARQ Feedback Payload shall be transported. If packing is used, it shall be transported as the first packed payload. See 6.3.3.4.3. Note that this bit does not address the ARQ Feedback payload contained inside an ARQ Feedback message.

MAC PDUs sent on a relay link through a tunnel shall be constructed into a relay MAC PDU of the form illustrated in Figure 6-2. Each relay MAC PDU shall begin with a fixed length relay MAC header (see 5.1.1.3.2). The relay MAC header shall be followed by zero or more extended subheaders and the payload. The payload shall consist of zero or more subheaders and zero or more MAC PDUs as defined in Figure 6-1. In the case of management tunnel, the payload may consist of zero or more subheaders and one MT_Transfer MAC message. A relay MAC PDU may contain a CRC as described in 6.3.3.5.2. Implementation of CRC capability is mandatory for MR systems and the presence of a CRC is indicated in the relay MAC header. When a relay MAC PDU contains a CRC, the CRCs of individual MAC PDUs within the payload shall be omitted but the CI bit setting and LEN values are retained. If omitted, the egress station of the tunnel shall calculate the CRCs and attach them to the individual MAC PDUs if the CI bit of the MAC PDU header within the relay MAC PDU is set.

5.1.1.3.1.1 Generic MAC header format for DL-MAP and UL-MAP MAC messages when the channel bandwidth is less than 1.25 MHz

The header of the DL-MAP MAC message shall be of the format defined in Figure 5-2. The DL-MAP is always the first burst in the DLSF so it can be identified as DL-MAP by its position in the burst. Therefore only LEN and HCS fields are transmitted. The modified GMAC header consists of 1 byte length field and 1 byte for HCS field.

![Figure 5-2—Modified DL-MAP header for channel bandwidths less than 1.25 MHz](image)

The header of the UL-MAP MAC message shall be of the format defined in Figure 5-3. The UL-MAP, if present, is the first data burst in the DLSF after DL-MAP, but it may not always be present in a frame in which case, the first burst may carry data traffic. Conflict will be avoided by setting HT = 1 to identify the burst as UL-MAP.

![Figure 5-3—Modified UL-MAP header for channel bandwidths less than 1.25 MHz](image)
5.1.1.3.2 Relay MAC header format

The header of the relay MAC PDU shall be of the format defined in Table 5-5 and further illustrated in Figure 5-4.

Table 5-5—Description of relay MAC header fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (bits)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>1</td>
<td>Shall be set to zero.</td>
</tr>
<tr>
<td>EC/AC</td>
<td>1</td>
<td>Encryption control if CID in the relay MAC header is T-CID. 0 = Payload is not encrypted. 1 = Payload, except subheaders inserted on the relay link, is encrypted. Authentication control if CID in the relay MAC header is MT-CID. 0 = Payload starting with MAC header defined in Table 5-1. 1 = Payload starting with MT_Transfer message defined in Table 6-222.</td>
</tr>
<tr>
<td>RMI</td>
<td>1</td>
<td>Relay Mode Indicator Shall be set to 1.</td>
</tr>
<tr>
<td>ASH</td>
<td>1</td>
<td>Allocation subheader 1=present; 0=absent</td>
</tr>
<tr>
<td>GMSH</td>
<td>1</td>
<td>UL: grant management subheader (GMSH) 1 = present, 0 = absent DL: Reserved; shall be set to 0.</td>
</tr>
<tr>
<td>FSH</td>
<td>1</td>
<td>Fragmentation subheader (FSH) 1=present, 0=absent</td>
</tr>
<tr>
<td>PSH</td>
<td>1</td>
<td>Packing subheader (PSH) 1=present, 0=absent</td>
</tr>
<tr>
<td>QSH</td>
<td>1</td>
<td>QoS subheader (QSH) 1=present, 0=absent</td>
</tr>
<tr>
<td>ESF</td>
<td>1</td>
<td>Extended subheader field If ESF=0, the extended subheader is absent. If ESF=1, the extended subheader is present and immediately follows the relay MAC header. The ESF is applicable in both the DL and UL.</td>
</tr>
<tr>
<td>CI</td>
<td>1</td>
<td>CRC indicator. 1 = CRC is included in the relay MAC PDU by appending it to the relay MAC PDU payload after encryption, if any. 0 = No CRC is included.</td>
</tr>
<tr>
<td>EKS</td>
<td>2</td>
<td>Encryption key sequence. The index of the traffic encryption key (TEK) of the access RS operating in distributed security mode and initialization vector (IV) used to encrypt the payload. This field is only meaningful if the EC/AC field is set to 1; otherwise, it shall be set to zero.</td>
</tr>
<tr>
<td>LEN</td>
<td>12</td>
<td>Length. The length in bytes of the relay MAC PDU including the relay MAC header and the CRC if present.</td>
</tr>
<tr>
<td>CID</td>
<td>16</td>
<td>T-CID or MT-CID.</td>
</tr>
<tr>
<td>HCS</td>
<td>8</td>
<td>Header Check Sequence.</td>
</tr>
</tbody>
</table>
5.1.1.3.3 MAC header without payload

This MAC header format is applicable to UL only. The MAC header is not followed by any MAC PDU payload and CRC.

5.1.1.3.3.1 MAC signaling header type I

For this MAC header format, there is no payload following the MAC header. The MAC signaling header type I is illustrated in Figure 5-5. Table 5-6 describes the encoding of the 3-bit Type field following the EC field.
5.1.1.3.3.2 MAC signaling header type II

This type of MAC header is UL-specific. There is no payload following the MAC header. The MAC signaling header type II is illustrated in Figure 5-6. Table 5-7 describes the encoding of the 1-bit type field following the EC field. The description of DL MAC header format with HT/EC = 0b11, defined as the Compressed DL-MAP, is not part of this subclause. The detailed description can be found in 8.4.5.6.1.

<table>
<thead>
<tr>
<th>Type field (3 bits)</th>
<th>MAC header type (with HT/EC = 0b10)</th>
<th>Reference figure</th>
<th>Reference table</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>BR incremental</td>
<td>Figure 6-8</td>
<td>Table 6-7</td>
</tr>
<tr>
<td>001</td>
<td>BR aggregate</td>
<td>Figure 6-8</td>
<td>Table 6-7</td>
</tr>
<tr>
<td>010</td>
<td>PHY channel report</td>
<td>Figure 6-12</td>
<td>Table 6-11</td>
</tr>
<tr>
<td>011</td>
<td>BR with UL Tx power report</td>
<td>Figure 6-9</td>
<td>Table 6-8</td>
</tr>
<tr>
<td>100</td>
<td>BR and CINR report</td>
<td>Figure 6-10</td>
<td>Table 6-9</td>
</tr>
<tr>
<td>101</td>
<td>BR with UL sleep control</td>
<td>Figure 6-13</td>
<td>Table 6-12</td>
</tr>
<tr>
<td>110</td>
<td>SN Report</td>
<td>Figure 6-14</td>
<td>Table 6-13</td>
</tr>
<tr>
<td>111</td>
<td>CQICH allocation request</td>
<td>Figure 6-11</td>
<td>Table 6-10</td>
</tr>
</tbody>
</table>

Figure 5-6—MAC signaling header type II format

5.1.1.3.4 DL MAC header without payload

This MAC header format is applicable to DL only. The MAC header is not followed by any MAC PDU payload and CRC.

5.1.1.4 MAC subheaders and special payloads

Five types of subheaders may be present in a MAC PDU with Generic MAC header; four per-PDU subheader types and one per-SDU subheader type. The per-PDU subheaders (i.e., extended subheaders,
FSH, FFSH, and GMSH) may be inserted in the MAC PDUs immediately following the Generic MAC header. If both the FSH and GMSH are indicated, the GMSH shall come first. In the DL, the FFSH shall always appear as the last per-PDU subheader. The ESF bit in the Generic MAC header indicates that one or more extended subheaders are present in the PDU. The extended subheaders shall always appear immediately after the Generic MAC header and before all other subheaders. All extended subheaders are not encrypted. (See 6.3.2.2.7.)

The only per-SDU subheader is the PSH. It may be inserted before each MAC SDU if so indicated by the Type field. The PSH and FSH are mutually exclusive and shall not both be present within the same MAC PDU.

When present, per-PDU subheaders shall always precede the first per-SDU subheader.

5.1.1.4.1 Downlink operation

5.1.1.4.1.1 BS operation

To change the location of a HARQ region associated with a particular Persistent Region ID, the BS transmits the Persistent HARQ DL MAP IE with a new HARQ Region definition (OFDMA Symbol offset, Subchannel offset, Number of OFDMA symbols, Number of subchannels) and sets the Persistent Region ID field of the Persistent HARQ DL MAP IE to the associated Persistent Region ID. The BS should set the allocation period to the same value for all persistent allocations associated with a particular Persistent Region ID.

5.1.1.4.1.2 MS operation

If the MS receives a persistent HARQ DL MAP IE, which includes its RCID and has the Persistent Flag set to 1, the MS shall store the Persistent Region ID field and the HARQ region definition. The MS shall determine its resource allocation using the slot offset field and the HARQ region definition. Upon receiving a subsequent Persistent HARQ DL MAP IE in a frame corresponding to the period of the persistent allocation, which has the Persistent Region ID field set to the stored Persistent Region ID, the MS shall store the new HARQ region definition and determine its resource allocation using the slot offset field and the new HARQ region definition. If the MS successfully decodes the DL-MAP and there is no Persistent HARQ DL MAP IE containing its assigned Persistent Region ID, then the MS shall use the stored location for the Persistent Region ID for its persistent allocation.

5.1.1.4.2 Uplink operation

5.1.1.4.2.1 BS operation

To change the location of a HARQ region associated with a particular Persistent Region ID, the BS transmits the Persistent HARQ UL MAP IE with a new HARQ Region definition. For uplink operation, the HARQ region is identified by the start of the UL subframe or allocation start indication information (if included).
Additionally, the BS sets the Persistent Region ID field of the Persistent HARQ UL MAP IE to the associated Persistent Region ID. The BS should set the allocation period to the same value for all persistent allocations associated with a particular Persistent Region ID.

5.1.1.4.2.2 MS operation

If the MS receives a persistent HARQ UL MAP IE, which includes its RCID and has the Persistent Flag set to 1, the MS shall store the Persistent Region ID and the HARQ region definition. The MS shall determine its resource allocation using the slot offset field and the HARQ region definition. Upon receiving a subsequent Persistent HARQ UL MAP IE in a distance in time which is multiple of the period of the persistent allocation, which has same Persistent Region ID value, the MS shall store the new HARQ region definition and determine its resource allocation using the slot offset field and the new HARQ region definition. If the MS successfully decodes the UL-MAP and there is no Persistent HARQ UL MAP IE containing its assigned Persistent Region ID, then the MS shall use the stored location for the Persistent Region ID for its persistent allocation.

5.1.1.5 Explicit path management for relay

After MR-BS discovers the topology between a newly attached MS or RS and itself, or detects a topology update due to events such as mobility, MR-BS may remove an old path, establish a new path and inform the new path information to all the RSs on the path.

When connections are established or removed, MR-BS may distribute the mapping information between the connection and the path to all the RSs on the path. The connection could be a regular connection established for an MS or a connection established for an RS (e.g., basic/primary management CID and tunnel connection). The path management procedures are specified below.

5.1.1.5.1 Path establishment, removal and update

After RS is operational, the MR-BS shall send a DSA-REQ message to distribute the path information to all the RSs on the path. The explicit path information and a uniquely assigned path ID shall be included. The CIDs to be routed on this path and their associated service flow parameters may also be included for path/CID binding operation.

If the MR-BS decides to remove an existing path (e.g., after an MRS handover), it shall send a DSD-REQ message with the path ID. The RSs receiving the DSD-REQ message shall remove all the information related to the path.

Upon receiving the DSA/DSD-REQ, the RS performs the operation as requested in the message, and then sends the request to its subordinate RS using the primary management CID of the subordinate RS that is obtained from the explicit path information included in the DSA/DSD-REQ message, or derived from the path information obtained from previous operation. Such process is repeated until the last RS on the path (i.e., the access RS) is reached. If an intermediate RS fails to process the request, it sends a DSA/DSD-RSP directly to MR-BS with the associated confirmation code. After receiving the DSA/DSD-REQ, the access RS then sends a DSA/DSD-RSP directly back to MR-BS.

The MR-BS may aggregate multiple path management commands into one DSA/DSD-REQ message to save bandwidth. When the paths of different path management commands in the same message divaricates in an RS, the RS separates the path establishment or removal commands into different messages and transmits them to the appropriate next-hop RSs.
5.1.1.5.2 CID to path binding

A routing table that contains the mapping between a CID and one given path needs to be updated when a new tunnel (identified by a Tunnel CID) is generated between the MR-BS and an access RS, or when a new connection (identified by an individual CID) is established for an RS or MS and the new connection is not put into a tunnel. The MR-BS selects a path to carry the traffic for the new connection, and informs all the RSs on the path of the binding between the path ID and the supported CIDs by sending a DSA-REQ message to all the RSs on the specified path. Such DSA-REQ message contains the CIDs of the connections that will be routed through the specified path, the path ID and optionally the service flow parameters for the connection. If the connection is a tunnel connection, the service flow parameters are the aggregate service flow parameters for all the connections put into the tunnel.

For multicast there may be more than one path bound to a single multicast CID.

When an RS on the path receives such a DSA-REQ message, it retrieves the CIDs and path ID information and builds up the routing table that will be used to route the traffic in the future for the specified CIDs. If the SFID and the QoS requirement are also present for certain connection, the RS saves them for scheduling the traffic for the specified CID. This process is repeated until the last RS along the path is reached. The last access RS then replies with the DSA-RSP.

If the MR-BS decides to cancel an existing binding between a path and one or more CID (e.g., after MS or MRS handover to another RS, or MS deregistration, or service flow deletion), it sends a DSD-REQ message with the path ID and the affected CIDs to the associated RSs. The RSs receiving such DSD-REQ shall remove the record of the correspondent mapping.

The processing of DSA/DSD-REQ by the RSs on the path is the same as that defined in 5.1.1.5.1.

The MR-BS may aggregate multiple CID to path binding commands in one DSA/DSD-REQ message to save bandwidth. In addition, when a path is established for one or more connections, the CID to path binding/unbinding procedure can be conducted together with the path establishment procedure by sending a single DSA-REQ or DSD-REQ to save bandwidth.

5.1.1.5.3 Temporary path establishment and CID to path binding during initial network entry

When an access RS does not use tunneling, a new path is determined by the MR-BS during MS/RS network entry, relay path management for forwarding the management messages of other MS/RS network entry procedures can be conducted as defined below.

— When an SS/RS performs initial ranging, it shall follow the steps indicated by the type of system in 6.3.10.3.1.1.

— When an RS receives RNG-RSP message with RS basic CID with path information, it shall bind basic CID and primary CID contained in the message with the path ID and start a timer T65 associated with the path ID. The RNG-RSP and the SBC-RSP messages shall be forwarded to the access RS by following the same mechanism defined for the DSA message in 5.1.1.5.2. If the RS is the endpoint of the path, replace RS basic CID with ranging CID, and forward to the MS or RS originating RNG-REQ.

— If T65 expires before the RS receiving DSA-REQ, the RS shall remove the association between the path ID and basic CID and primary CID. Otherwise, the RS shall stop T65 when receiving DSA-REQ with the same path ID.

5.1.1.6 Relaying support for combined ranging and initial topology discovery

A combined initial ranging and initial topology discovery procedure can be conducted as defined below:
— When an SS/RS performs initial ranging, it shall follow the steps indicated by the type of system in 6.3.10.3.1.1.
— When an MR-BS receives an initial RNG-REQ from an SS/RS, it determines that the SS/RS sending the RNG-REQ directly attaches to MR-BS and is just one hop away.
— When an MR-BS receives a RNG-REQ message with the CID set to the basic CID of an RS, it shall verify its validity after replacing the basic CID with the ranging CID. Since the MR-BS is already aware of the topology between the selected access RS and itself, by using the same mechanism as defined in this section, it establishes the topology between the SS/RS and itself.

5.1.1.7 R-link monitoring and reporting procedure for relay path management

Computation at the MR-BS of the end-to-end route quality metric for the multihop path between the MR-BS and an RS in its cell may, optionally, be enabled. Optionally, the stability of link quality may be considered as a metric for multihop path selection. A route quality metric may be derived at the MR-BS based on link measurements obtained from a CQI fast-feedback channel (CQICH) and/or from a REP-RSP message carrying an R-link TLV.

In the case of RSs operating in centralized scheduling mode, MR-BS may allocate CQICH to an RS in its cell for reporting CQI on DL transmissions originating at RS’s superordinate RS or MR-BS. Allocation of CQICH for RSs is performed in the relay zone.

In the case of scheduling RS, MR-BS and each RS in an MR cell may allocate CQICH to a subordinate RS. Allocation of CQICH for an RS is performed in the relay zone.

To report R-UL, R-DL and R-Link neighbor measurements, REP-RSP messages with R-Link TLV may optionally be used. An MR-BS may send a REP-REQ message to an RS in its cell requesting RSSI mean and standard deviation or CINR mean and standard deviation measurements. The RS may respond with a REP-RSP message containing R-Link TLV and requested measurements. MR-BS may use the reported measurements for route quality calculations, and optionally for computing the stability of a route.

5.1.1.7.1 Access-link monitoring and reporting procedure for MS path management

Computation at the MR-BS of the overall quality metric for the multihop path between the MR-BS and an MS in its cell may, optionally, be enabled. To enable routing metric computation at the MR-BS, R-link metrics shall be reported to the MR-BS in the REP-RSP message containing R-Link TLV, and access link metrics may optionally be reported to the MR-BS in the REP-RSP message containing Access-Link TLV.

The REP-RSP message may be sent to the MR-BS in response to the REP-REQ message or by sending an unsolicited REP-RSP message. Access-link measurements at an MS may optionally be triggered by sending a MOB_SCN-RSP message (6.3.2.3.44) to the MS.

To enable DL CQI reporting, MR-BS may allocate CQICH to MSs in its cell. CQICH is allocated in the access zone on the access link hop, and may optionally be allocated in the relay zone on subsequent hops. Therefore, an RS may send to MR-BS CQI received from an MS in the access zone through a corresponding CQICH in the relay zone. A fast feedback region for reporting MS CQI values in the relay zone to the MR-BS may be allocated by sending, in a unicast manner, a FAST-FEEDBACK allocation IE (8.4.5.4.39) to an RS. Fast feedback slot assignments in this region shall be the same as those in the CQI fast feedback region in the RS access zone.

5.1.1.8 Path management for multicast services

The MR-BS may initiate a multicast distribution tree for the MBS. Alternatively, an MS may initiate a MBS, by sending a DSA-REQ message with the MBS service request to the MR-BS. The procedures for establishing a multicast distribution tree are as follows.
When an MR-BS initiates a MBS or receives a DSA-REQ message with the MBS request from an MS, it checks whether the requested MBS has been created. If not, the MR-BS creates a multicast distribution tree for this MBS and allocates a multicast CID (MCID) to it. The MR-BS also determines the path(s) to carry this multicast service flow. The MR-BS creates the mapping between the determined path and the MCID. The MR-BS informs all the RSs on the path of the binding between the path ID and MCID by sending a DSA-REQ message along path as specified in 5.1.1.5. Each RS along the path stores the path ID and MCID binding information for forwarding multicast data with the MCID. The MR-BS adds this path to the multicast distribution tree and records the number and identification information of the MSs using the path for multicast communications. A multicast distribution tree may consist of multiple paths.

If the multicast distribution tree has been created and an MCID has been allocated to this MBS, the MR-BS determines the path to carry this multicast service flow. If the path is not in the multicast distribution tree, the MR-BS creates the binding between the determined path and the MCID. The MR-BS distributes the path and MCID binding information to all the RSs along the path. The MR-BS adds this path to the multicast distribution tree and records the number and identification information of the MSs using the path for multicast communications. If the path is already in the multicast distribution tree, the MR-BS simply updates the number and identification information of the MSs using the path for the MBS in the multicast tree.

A path may be removed from a multicast distribution tree by the MR-BS. When an MS needs to leave the multicast service, the MS sends a DSD-REQ to the MR-BS to request removing it from the multicast service flow. The MR-BS first updates the number and identification information of the MSs that are receiving the MBS along the path to this requesting MS. The MR-BS determines whether the path can be removed from the tree MCID. If no more MSs use this path for the MBS, the path may be removed from the multicast distribution tree. Otherwise, the path shall not be removed from the multicast distribution tree. If the path is removed from the tree-MCID then the MR-BS removes the binding between the path and the MCID by sending a DSD-REQ along path as specified in 5.1.1.5.

When the parameters for a multicast service flow change, an MR-BS or MS may also send a DSC-REQ message to update these changes. All the RSs in the multicast distribution tree of the MBS are informed of these changes. This is achieved by MR-BS sending a DSC-REQ message to all of the RSs along all the paths in the multicast distribution tree as specified in 5.1.1.5.

5.1.1.9 Neighbor path metric for relay

An end-to-end metric of the path between an RS and its MR-BS may be reported in the MR_NBR-INFO message. The end-to-end metric is carried in the form of a TLV described in 11.4.

5.1.2 Relay station neighborhood discovery

In order to perform RS neighborhood discovery, the RS may obtain its neighbor information using MR_NBR-INFO message (6.3.2.3.61). Then, it shall scan the preamble or, if present, the R-amble transmitted by the existing MR-BS(s) or RS(s), and send the measurement report to the MR-BS using the RS_NBR-MEAS-REP message (6.3.2.3.64).

As not every RS will transmit its own preamble and the existing RSs in an MR network need to perform measurement over the preamble, the MR-BS may instruct the RSs to perform complete neighborhood discovery/measurement, as described further in this subclause.

The neighborhood discovery/measurement can be used in different stages of operation, during initial network entry, during periodic intervals or whenever an MR-BS requires this information. There are two methods to carry out neighborhood measurements:

a) Repeatable R-amble transmission and monitoring scheme
b) Preplanned R-amble transmission and monitoring scheme

5.1.2.1 Repeatable R-amble transmission and monitoring scheme

The transmission and monitoring frames for the R-amble are specified by the MR-BS in the RS_Config-CMD message (6.3.2.3.63). Each RS finds the R-amble sequences from the parameters provided in the RS_Config-CMD message. More details are provided in 8.4.6.1.1.4. The measurement results shall be sent to the MR-BS by using the RS_NBR_MEAS-REP message (6.3.2.3.64) or using any other appropriate measurement report messages, periodically or as requested by the MR-BS.

5.1.2.2 Preplanned R-amble transmission and monitoring scheme

In this scheme, the MR-BS first sends the RS_Config-CMD message to the RSs that will be involved in the neighborhood measurement mechanism, and the message is either broadcast, multicast or unicast to these RSs. The 8 LSB bits of frame number shall be set to synchronize the starting time to the RSs. If the RSs involved in this mechanism are in a different MR-cell, each of the Start Frame Numbers sent by each MR-BS shall be synchronized to the same frame time. The Prefix shall be set to “00” and attach the transmit/receive pattern for each iteration. The pattern is indicated by Amble Index, which are the indexes instructed in the RS_Config-CMD message.

Second, the stations follow the instruction to transmit/receive the R-amble at the designated frames in each iteration.

Third, the RSs report their RSSI or CINR measurement results with corresponding amble index by RS_NBR_MEAS-REP to MR-BS.

The preplanned R-amble transmission opportunities are identified by Monitoring Duration and Interleaving Interval for each iteration. An example is given in Figure 5-7, where the Duration = 2, Interleaving Interval = 3 and the Iteration = 2. When the Iteration is more than one, the pattern for each iteration shall be carried in this message. After the last iteration, the RSs shall report the measurement results by RS_NBR_MEAS-REP message defined in 6.3.2.3.64.

![Figure 5-7—R-amble transmission pattern as per the preplanned scheme instructed by MR-BS](image)

5.1.3 Interference measurement in MR systems

This subclause describes a measurement and reporting procedure with supported messaging mechanism to estimate the interference level in MR network.
5.1.3.1 Interference prediction by RS neighborhood measurement

In order to predict the interference or SINR of the radio links for different MR network topology and radio resource reuse pattern, the following prediction method may be considered based on the RSSI reported by RS_NBR_MEAS-REP message (see 6.3.2.3.64):

a) Prediction of the interference plus noise power received by station #i: The interference plus noise may be the summation of (1) the thermal noise plus background interference power received by station #i and (2) the signal power not intended to be received by station #i but transmitted by the same radio resource.

b) Prediction of the received SINR of station #i: The SINR may be the following ratio:

1) The total signal power destined to station #i to
2) The interference plus noise power obtained in step a)

5.1.3.2 Optional interference detection and measurement by RS sounding

As an option, the path loss and interference between multiple RSs and the MR-BS can be estimated using the UL sounding mechanism (8.4.6.2.7). In order to predict the interferences between different RS cells, the MR-BS needs to collect the interference measurements from the related RSs and possibly from their associated MSs. The interference can be estimated by having one or multiple RSs or MSs transmit UL sounding signals at specific sounding zones and having the other related RSs and BSs measure the related CINR or RSSI of the received sounding signals. An MR-BS may construct a multicast group within its MR-cell that uses a multicast CID to represent the group of the RSs that participate in the interference measurement. Alternatively multiple unicast messages can be sent. This group is called RS_interference_measurement group and shall be setup before any measurement of UL sounding signals by the group. The interference measurement procedure is controlled by the MR-BS for intra-MR-cell interference measurement. For interference measurement performed across clusters of MR-cells, a network control entity is required to coordinate the measurement activities across the MR-cells.

The interference measurement operation within an MR cell is as follows: the MR-BS sends an REP-REQ message to its RS_interference_measurement group. The REP-REQ carries the reporting period, start frame number and the type of measurement reports (either CINR or RSSI). MR-BS sends UL_Sounding_Command_IE to RS_interference_measurement_group as a multicast burst. The MR-BS shall also transmit PAPR_Safety_and_Sounding_Zone_Allocation_IE. When an RS receives such an REP-REQ, it expects to hear the PAPR_Safety_and_Sounding_Zone_Allocation_IE (8.4.5.4.2) starting from the start frame number until the time indicated in the TLV of report period in the REP-REQ message. If an RS specified by the multicast CID in PAPR_Safety_and_Sounding_Zone_Allocation_IE, and indicated by CID in the UL_Sounding_Command_IE, the RS shall transmit the sounding signal at the specified symbol and subcarriers as instructed by the MR-BS. Otherwise, the RSs belonging to the RS_interference_measurement_group shall measure the sounding signals if they are not scheduled to transmit sounding signals in the same symbol. The scheduling of RS PAPR_Safety_and_Sounding_Zone_Allocation_IEs by MR-BS is implementation specific.

The sounding signal sent from different RSs and different MSs can be multiplexed in the same sounding zone. This can be done when the MR-BS or RS serving the MS sends to the MS a separate UL_Sounding_Command_IE with instruction of the sounding signal that may be sent by the MS. The measurement and reporting procedure of the MS UL sounding signal by the RSs in the RS_interference_measurement_group remains the same as the RS sounding procedure. The average measurement results are reported. After an MR-BS receives the REP-RSP from all the RSs in its RS_interference_measurement_group, it shall forward it to the network control entity.

When interference across different MR-cells needs to be estimated, the above UL sounding procedure shall be conducted with the coordination of a network control entity that controls multiple BSs. In this case the
network control entity shall coordinate the multiple BSs to send PAPR_Safety_and_Sounding_Zone_Allocation_IE and UL_Sounding_Command_IE to their respective RS_interference_measurement_groups and MSs for conducting UL sounding measurement across MR-cells. When the RS sounding signal is to be sent by an RS in one of the MR-cells, the same PAPR_Safety_and_Sounding_Zone_Allocation_IE and UL_Sounding_Command_IE shall be duplicated and sent in the other MR cells, so the RSs in these other cells shall conduct measurement on the UL sounding signal.

5.1.4 RS broadcast message relaying

For a non-transparent RS operating in centralized scheduling mode, the MR-BS shall generate and send RS_Access-MAP message to the RS over the basic connection of the RS. When the RS receives the RS_Access-MAP message, RS shall compose FCH and possibly the associated MAPs such as DL/UL-MAP message, Compressed DL/UL-MAP, SUB-DL-UL-MAPs message and HARQ MAP message, etc., based on the RS_Access-MAP message. In case of more than two hops, the MR-BS shall generate and send RS-Relay-MAP message to RS over the basic connection of the RS. When RS receives RS-Relay-MAP message, RS shall compose R-FCH and R-MAP based on the RS_Relay-MAP message.

Upon receiving the DCD/UCD message with RS primary CID, as shown in Figure 5-8, or RS multicast management CID, the RS shall acknowledge the reception of DCD or UCD messages over primary management connection by sending an acknowledgment header (see 6.3.2.1.3.2.2.3) or MR_Generic-ACK message (see 6.3.2.3.79). The Transaction ID of the MR Acknowledgment header or 8 LSB of the transaction ID of the MR_Generic-ACK message shall be set to the Configuration Change Count of the DCD or UCD message. There shall be one MR Acknowledgment header or MR_Generic-ACK message per DCD/UCD message. The MR-BS may retransmit the DCD/UCD message if an acknowledgment header or message is not received at the expiration of T61 timer.

For a centralized scheduling mode RS, as shown in Figure 5-9, after receiving an acknowledgment header from the RS corresponding to reception of the DCD/UCD, the MR-BS shall periodically allocate unsolicited bandwidth to the RS to enable it to broadcast the DCD/UCD message over the access link by using an RS_BW-Alloc_IE in the RS-Access-MAP message. To enable the RS to send the DCD/UCD message with fragmentable broadcast CID, if the RS_BW-Alloc_IE is lost, the RS shall request bandwidth by using an RS_BR header after the timer T69 expires. For a scheduling RS, the RS shall autonomously broadcast DCD/UCD with fragmentable broadcast CID.

When the DCD and UCD messages are generated by the MR-BS, the MR-BS shall send DCD and UCD messages to either one RS with its primary management CID or multiple RSs with RS multicast management CID. In RS grouping, the superordinate station of the group shall use the multicast CID of the RS group to send RS_RS_Access-MAP message.

In MR networks, each RS would be assigned to different DCD/UCD messages with the same configuration change count. In this case, each DCD/UCD message may be separated into the common part and the specific
part before fragmentation. The common part shall be packed with multicast management CID, and the receiving RS shall buffer the common part until receiving the specific part that shall be packed as a new DCD/UCD message with the RS primary management CID. In the specific part, the message type field, reserved field and configuration change count field shall be the same as the associated common part. The receiving RS shall restructure the common part and the associated specific part to a complete DCD/UCD message, and then broadcast the message with Fragmentable Broadcast CID.

5.1.5 RS de-registration

In MR networks, an RS may end its service and be removed from the networks. During the RS de-registration process, all subordinate MSs of the RS shall be transferred to another RS or MR-BS prior to RS deregistration. An RS may transmit DREG-REQ to an MR-BS so that it initiates the de-registration procedure and requests handover of all its subordinate MSs. Upon receiving DREG-REQ, the MR-BS decides whether it allows the RS de-registration. If the request is accepted, the MR-BS may transmit DREG-CMD to inform the acceptance and start BS-initiated handover process for the requested MSs. After handover procedures between the MR-BS and the RS’s subordinate MSs are completed, the MR-BS informs the RS that handover is completed by transmitting DREG-CMD. Upon receiving DREG-CMD, the RS starts deregistration process. The MR-BS may initiate the de-registration process by transmitting an unsolicited DREG-CMD message.

If the MR-BS rejects the request (Action Code = 0x06), the MR-BS informs the RS rejection of the request by transmitting DREG-CMD. Upon receiving DREG-CMD with rejection information, the RS continues normal operation. After REQ-duration expires, the RS retransmits DREG-REQ to the MR-BS.
5.1.6 MR location information

In order to assist RS neighborhood discovery, MR-BS may send an MR_LOC-REQ message to the RS. Upon receiving the MR_LOC-REQ message, the RS shall report its location information by sending an MR_LOC-RSP message to the MR-BS. If the MR_LOC-REQ message containing the report type field 0b01, RS shall periodically send an MR_LOC-RSP message to the serving MR-BS every time interval defined by “Report period.”

In order to obtain the location information of neighbor stations, an RS may send an MR_LOC-REQ message to the MR-BS. Upon receiving the MR_LOC-REQ message, MR-BS shall report the location information of neighboring stations by sending an MR_LOC-RSP message to the RS.

The message sequence charts (Figure 5-10, Figure 5-11, and Figure 5-12) describe the RS location request and report that shall be followed by compliant RSs and MR-BSs.

Figure 5-10—Relay location report (part 1)

MR-BS

RS

[Diagram showing message sequence between MR-BS and RS with MR_LOC-REQ and MR_LOC-RSP messages]

Copyright © 2022 IEEE. All rights reserved.
5.1.7 RS grouping

The RS grouping method may be used to enable the following operation scenarios:

- The operation of an RS in a location where no segment allocation is possible due to interference from all other segments
- The operation of MSs in a region served by multiple short-range RS without incurring high handover signaling disadvantages
- The operation of mobile RSs with dynamic adjustments of coordinated transmission and reception
- Macro-diversity within an MR cell applied to individual SSs and individual connections

The grouping of RS and the coordinated operation of RS in a group is determined and controlled by its superordinated station or MR-BS.

- The members of the group are assigned a multicast CID as the RS group ID. The multicast CID is the same for all members in the group. Thus, an RS can be managed individually or as a group using the basic CID and this multicast CID. These IDs are unique within the associated MR-BS. The association of an RS to an RS group is configured using RS_Config-CMD message (see 6.3.2.3.63).
The multicast CID of the RS group is used for messages that are addressed to all the members of the RS group, and the basic CID is used for the individual members of the RS group. When the MS performs network entry into an RS group, the MS network entry procedure outlined in 6.3.10.3.1.1 shall be followed. When the MS moves within the RS group, the MS movement procedure outlined in 5.1.7.1 shall be followed. For a transparent (or non-transparent) RS group all the other procedures follow the procedures for the transparent (or non-transparent) RS. For example, if the RS group is non-transparent, the MAPs for the individual RSs shall be received by the RSs according to the associated procedure defined for a non-transparent RS using the multicast CID of the RS group (see 5.1.4).

- The RS group has a superordinate station (non-transparent RS or MR-BS) that is the superordinate station of all RSs in the group. All the RSs in the RS group shall either transmit the same preamble, FCH and MAPs or they all do not transmit any preamble, FCH or MAPs. The MR-BS or the superordinate station carries out resource control and scheduling for the RS group. The non-transparent RS group transmitting with a preamble different from superordinate station’s preamble may be assigned a BSID parameter value. The RS group shall serve only MSs. The radio resources may be shared by the RSs members of the RS group for data burst transmission. The RSs members of the non-transparent RS group shall transmit with the same EIRP parameter value, decided by the MR-BS.

- Removal of an RS from the group: During normal operation of the RS group, each RS continues to monitor the radio environment (e.g., the interference). One example is that for an RS that is located at the edge of the group coverage area, it could detect strong segment interference from other nearby RS(s) or RS groups. When this happens, the MR-BS can reconfigure the RS(s) operate in a different RS operational mode using the TLV described in 11.25.1. For RS grouping, DL/UL reciprocity relied on by SS in the open loop power control may not hold. In this case, the SS power control correction term in Equation (8-148) may be used to set SS UL TX power to an appropriate level. Computation of the correction term is implementation specific.

- Addition of an RS to an existing group or forming a new group: An RS, at network entry, can a) operate on its own, i.e., it is assigned a dedicated preamble index (implying the segment), b) form a new group or c) join an existing group. The RS may perform measurements such as radio signals from the neighbor stations (the RSs or the MR-BS), and then report to the MR-BS the preferred preamble index selected by the RS (implying the segment). The MR-BS replies by either confirming the preamble sequence index selected by the RS or assigning a different one, indicating whether it should transmit the preamble, and at the same time, providing the corresponding RS group ID. The MR-BS may assign one of the members as the designated RS based on the measured signal qualities at the members. The designated RS may be responsible for certain procedures such as measurement reporting as specified elsewhere in this standard.

- For communication with RS groups, tunnel-based or CID based forwarding can be applied. If the MS/SS is served by an RS group, the tunnel connections shall be established between the MR-BS and the superordinate station of the RS group i.e., the superordinate station is considered as the access station for the tunnel connection that is the end-of-tunnel in DL and beginning-of-tunnel in UL.

- Data forwarding within RS group: For DL, the members of an RS group may be configured to forward traffic data for only specific subordinate terminal stations. This may be done on a per-connection basis. In this way, by specifying scheduling times, two RSs belonging to the same RS group may transmit to two different MSs/SSs at the same time. In addition, transmissions may be scheduled such that multiple RSs in the RS group may transmit to the same MS to exploit macro-diversity. This scheduling may be achieved for RSs operating in centralized scheduling mode by keeping CID list associated with each RS. Each RS would look for the data bound to its subordinated stations or data coming from the subordinate stations in the uplink and forward in the assigned times indicated in the MAP. The list may be updated by the RS_Member_List_Update message defined in 6.3.2.3.77 or DL_Transmit_Reference_IE defined in 6.3.2.3.80. If the MR-BS does not receive MR_Generic-ACK message from all RS group members designated in the RS_Member_List_Update message after the Frame Action Number, DL_Transmit_Reference_IE should be used to encode the forwarding rules for the RS group members. The RS group members
shall follow the forwarding rules encoded in DL_Transmit_Reference IE, if present, instead of its original forwarding rules to forward the data to the MS. If the RS_Member_List_Update message is not provided by the superordinate station to the RSs members of the RS group, then all RSs members of the group shall transmit according to the MAPs received, without using the per CID transmission. Data forwarding may also follow the procedure defined in 6.3.15.7 for DL HARQ for RS groups.

— For the UL, the UL signaling can be designed such that several member RSs may receive data from multiple MS at the same time. Data forwarding may also follow the procedure defined in 6.3.15.7 for UL HARQ for RS groups. This scheduling may be achieved for RSs operating in centralized scheduling mode by keeping an MS list or CID list associated with each RS and forwarding those messages in a specified resource unit (time and frequency). When the MS is same and the resources are the same, it is equivalent to macro-diversity. When the resources are same but the MSs are different, it is equivalent to parallel transmission occurring at different locations.

— Each time a handover occurs or a new terminal joins an RS group, the list of CIDs for the RSs in the group may be updated.

5.1.7.1 MS movement among access stations that share the same BSID

The stations that share the same BSID (i.e., the non-transparent RSs that transmit the same preamble, FCH or MAPs or transparent RSs that have the same BSID), shall perform measurement of MS signal quality to assist MS movement among stations.

The stations shall measure the signal quality (RSSI, CINR), Timing Adjustment (TA), power and Frequency Adjustment (FA) for each active MS served by these stations to support MS mobility among these stations. All RSs shall use an MR_RNG-REP message to provide MR-BS/superordinate RS with the selected report metrics (RSSI and/or CINR, TA, FA and power adjustment) for each active MS when needed.

Two modes of operation are described in 5.1.7.1.1 and 5.1.7.1.2. The mode of operation and related reporting parameters are configured in RS_Config-CMD in 6.3.2.3.63.

An MR-BS/superordinate RS may select a new designated RS based on the measurement results and use RNG-RSP to adjust the timing and the power level of the MS, in order to fulfill the handover procedure. An MR-BS/superordinate RS may use the RS_Member_List_Update management message to notify the RSs of the changes regarding data forwarding status for the specified MSs.

5.1.7.1.1 Mode 1

For this mode of operation, only those RSs that are marked as designated RSs shall automatically report the measurement results to MR-BS/superordinate RS in an event-triggered or periodic way, for the basic CID of MSs provided in the RS_Member_List_Update.

For event-triggered reporting, the designated RS shall send an MR_RNG-REP message to report its measurement results if the selected triggering condition is met. The trigger condition could be RSSI, CINR, or TA and is specified in RS_Config-CMD message. For periodic reporting, the designated RS shall send an MR_RNG-REP message every REP_INT that is specified in RS_Config-CMD message and the MR-BS/superordinate RS shall periodically allocate uplink resource for the designated RS to report the latest measurement result for each active MS.

In Mode 1, non-designated RSs shall report their measurement results only if the RS_MOB_MEAS-REQ message is received. The MR-BS/superordinate RS shall send RS_MOB_MEAS-REQ message to request all or part of RSs in the same RS group to report their measurement results for a specific MS. The MR-BS/superordinate RS shall allocate uplink resource for the selected non-designated RSs to send their MR_RNG-REP messages at the frame specified in RS_MOB_MEAS-REQ.
5.1.7.1.2 Mode 2

For this mode of operation, an RS may report the measurement results to an MR-BS/superordinate RS using an MR_RNG-REP message in an event-triggered way as indicated below.

If the MR-BS/superordinate RS provides the thresholds values for triggering, the RS shall send the measurement report to MR-BS/superordinate RS in the following instances:

- When the measured RSSI/CINR crosses above RSSI/CINR_T_ADD[i] (i=0,...,NRSSI-1/NCINR-1).
- When the measured RSSI/CINR crosses below the RSSI/CINR_T_DEL[i] (i=0,...,NRSSI-1/NCINR-1).
- When the current measured TA exceeds TA_DIFF and the RS has the CID of the MS included in the RS_Member_List_Update message.

If the MR-BS/superordinate RS does not provide the threshold values for adding/removing an MS, the RS uses its own threshold values to decide when to report the measurement to MR-BS/superordinate RS.

5.1.8 Support of multicast operation for M2M applications

A BS may provide a multicast service for group of M2M devices that share a downlink multicast service flow. The BS shall initiate the establishment of a service flow using the DSA procedures. During the establishment of the service flow, the service flow is assigned an M2MCID, which uniquely identifies the service flow. The M2M device shall retain these identifiers in idle mode (see 6.3.1). The BS shall provide the mapping between the service flow and the M2MCID during the DSA signaling and may modify this mapping using the DSC procedures or by using M2MCID Update TLV during network reentry.

5.1.8.1 M2M multicast operation in idle mode

A BS may provide a multicast service for M2M devices in idle mode with or without requiring network reentry of the M2M devices. Before a BS sends DL multicast data, the BS shall transmit the paging message including the multicast traffic indication to the M2M devices during the paging listening intervals of the M2M devices. If an M2M device receives the paging message indicating multicast traffic reception without network reentry during its paging listening interval and the paging message does not include the Multicast transmission start time TLV, the M2M device shall start receiving the DL multicast data without the idle mode termination.

The Multicast transmission start time TLV may be included in the paging message in order to indicate when the DL multicast data is sent by the BS. The value of Multicast transmission start time TLV shall be less than the start time of the next paging listening interval of the M2M devices receiving the MOB_PAG-ADV message. The M2M device may power down until the frame indicated by the Multicast transmission start time TLV in the MOB_PAG-ADV message.

When the multicast data transmission ends, the BS shall notify the end of multicast data transmission to the group of M2M devices by sending the MOB_MTE-IND message. Upon receiving the MOB_MTE-IND message, the M2M devices may enter the paging unavailable interval as specified in 6.3.22.4.

In order to receive the M2M multicast data during idle mode M2M devices in idle mode shall use M2M Multicast Traffic Reception timer. If Multicast transmission start time TLV is included in the MOB_PAG-ADV message indicating the multicast traffic reception (Action code = 0b10), M2M devices receiving the MOB_PAG-ADV message shall start the Multicast Traffic Reception timer at the frame indicated by the Multicast transmission start time TLV. Otherwise, the M2M device shall start the Multicast Traffic Reception timer when the M2M device receives the MOB_PAG-ADV. The M2M device shall reset this timer whenever the multicast data is received and stop the timer when it receives the MOB_MTE-IND message.
message. If the M2M Multicast Traffic Reception timer expires, the M2M device shall enter the paging unavailable interval as specified in 6.3.22.4.

5.1.9 Abnormal power down

When an abnormal or involuntary power down has occurred, an M2M device may attempt to report the abnormal power down event.

5.1.9.1 Abnormal power down reporting in normal operation

If the M2M device is in normal operation with uplink bandwidth already allocated and available, then it may use the available bandwidth to send an M2M Abnormal Power Down Report header (as defined in 6.3.2.1.3.2.3.1).

If the M2M device does not have available UL bandwidth, then it may use the procedure defined in 6.3.6 to request bandwidth. Upon receiving bandwidth allocation it may send the M2M Abnormal Power Down Report header.

The M2M device may start its Abnormal Power Down Confirmation timer at the transmission of the M2M Abnormal Power Down Report header in order to wait for Abnormal Power Down Confirmation signaling header. If the M2M device has not received the M2M Abnormal Power Down Confirmation header until the Abnormal Power Down Confirmation timer expires, it may restart the abnormal power down reporting procedure.

5.1.9.2 Abnormal power down reporting in idle mode

When an abnormal power down occurs, an M2M device in idle mode that has been configured to report abnormal power down events and that has a valid security association with the preferred BS shall select a ranging opportunity within a backoff window starting at the next frame. The M2M device shall set the backoff window size as large as possible, yet such that it is guaranteed to complete the abnormal power down reporting procedure before its power is depleted. The M2M shall select the ranging opportunity, \(t \), where \(t = 1, \ldots, b \), within the backoff window according to the following cumulative distribution function:

\[
F(t) = \frac{t - 1}{N - 1}
\]

where \(b \) is the backoff window size and \(N \) is the value of the configurable system parameter Abnormal Power Down Ranging Opportunity Selection parameter (see Table 10-1). At the selected ranging opportunity, the M2M device shall transmit the Abnormal Power Down Ranging Code, which is also a configurable system parameter (see Table 10-1).

The BS, upon receiving the ranging code, may include a CDMA Allocation IE in the next frame identifying the M2M device and provide an allocation sufficiently large to allow the M2M device to transmit a RNG-REQ message including a Ranging Purpose Indication TLV and the CMAC/HMAC Tuple. Upon receiving this allocation, the M2M device shall transmit a RNG-REQ message including a Ranging Purpose Indication TLV with bits 5–7 set to 001 (power outage) and a valid HMAC/CMAC Tuple. The M2M device shall not repeat sending of a ranging code if it does not receive an allocation from the BS.

If the target BS evaluates the HMAC/CMAC Tuple as valid and can supply a corresponding authenticating HMAC/CMAC Tuple, then the target BS may reply with a RNG-RSP message including the Location Update Response TLV and HMAC/CMAC Tuple completing the abnormal power down reporting process.
5.1.10 M2M Short Data Burst transmission

If an M2M device receives a bandwidth allocation that is sufficient for piggybacking M2M Short Data Burst contents in a RNG-REQ message during network reentry, it may send the RNG-REQ message with a piggybacked M2M Short Data Burst with SFID for Short Data Burst.

If the data is received successfully, the BS shall send a RNG-RSP message with an M2M Short Data Burst Confirmation TLV. This concludes the Short Data Burst transaction.

If an M2M device receives a bandwidth allocation that is not sufficient for piggybacking M2M Short Data Burst contents, it may include an M2M Bandwidth Request combined with the related SFID in a RNG-REQ message during network reentry. If the allocation allows for it, it may additionally include the Bandwidth Request Size in the RNG-REQ message. If the BS receives the RNG-REQ message with an M2M Bandwidth Request, the BS shall include M2M Bandwidth Request ACK in the RNG-RSP message. If the BS accepts the bandwidth request, the BS shall allocate UL bandwidth to the M2M device after network reentry completion.

To transmit short data DL bursts, the BS may include an M2M Short Data Burst TLV in a RNG-RSP message when the action code of MOB_PAG-ADV indicates location update.

For DL short data burst transmission, the BS should send a Basic CID and a Temp CID Timer in a RNG-RSP message. When the M2M device successfully receives a RNG-RSP message with an M2M Short Data Burst, a Basic CID, and the Temp CID Timer, it shall set T3 timer (see Table 10-1) and wait for bandwidth allocation on the Basic CID. If UL bandwidth is allocated before expiration of T3 timer, the M2M device transmits a RNG-REQ message containing an M2M Short Data Burst Confirmation TLV. If T3 timer expires, the M2M device shall perform bandwidth request procedure to transmit a RNG-REQ message containing an M2M Short Data Burst Confirmation TLV.

5.2 Procedures for uncoordinated coexistence

This subclause describes enhancements in support of operation in license-exempt bands. First, general concepts are described, after which details of support for uncoordinated coexistence mechanisms are presented. The mechanisms detailed are as follows:

- Coexistence with specific spectrum users (SSUs) (5.2.1.2), often termed Dynamic Frequency Selection (DFS) (ITU-R F.1499 [B51], ETSI EN 301 893 [B17]).
- Coexistence with non-specific spectrum users (non-SSUs) (5.2.1.3). Dynamic Channel Selection (DCS) (5.2.1.3.2) is a realization.
- Uncoordinated Coexistence Protocol (UCP) (5.2.1.3).

Mechanisms are related to bands containing SSUs and those containing non-SSUs. It shall be left to regulation to mandate such mechanisms for a particular band.

5.2.1 Uncoordinated coexistence mechanisms

5.2.1.1 Overview

This subclause details a number of uncoordinated coexistence mechanisms. Whether these features are mandatory or optional is governed by adherence to profiles described in 12.8.1.

The mechanism overviewed in 5.2.1.2 is intended to protect specific spectrum users (SSUs) where regulation mandates. Subclause 5.2.1.3 provides a general uncoordinated coexistence mechanism suitable, for example, in bands where no mandatory coexistence behavior is required.
In bands containing both SSUs and non-SSUs, it can be expected that a combination of schemes presented in 5.2.1 will be required to provide mandatory protection for the SSUs and as well as a means of coexistence with non-SSUs.

Subclause 5.2.1.3 provides a UCP to provide a further mechanism to allow operation in license-exempt bands for non-SSUs.

Upon system startup, the BS shall choose a suitable channel in which to operate. Channel selection shall depend upon the requirements for operation in a given band. If the band contains SSUs, the BS shall use a protocol termed in this subclause “DFS” to attempt to find a channel free of SSUs; this protocol is described in 5.2.1.2. If the band contains only non-SSUs (IEEE 802.16 or non-IEEE 802.16), the BS uses the DCS protocol to find the best channel for operation; this protocol is described in 5.2.1.3. In certain regulatory regimes where SSUs are not present, it may be sufficient for the choice of channel to be able to be performed manually with coordination between operators as needed. If the band contains both SSUs and non-SSUs (IEEE 802.16 or non-IEEE 802.16) then both DFS and DCS protocols are used together. The DFS protocol is used to avoid interference to SSUs by vacating the channels on which SSUs are detected, and additionally DCS is used to select the best channel of the set of channels in the band that are cleared for operation by DFS.

The BS shall continue to perform DFS and DCS operation, as required, selecting the most appropriate channels based on the prevailing conditions and reacting to reported measurements from the SSs. For the case where SSUs are detected on a channel then the DFS protocol shall attempt to select an alternative channel. For the non-SSU (IEEE 802.16 or non-IEEE 802.16) detection of the BS shall use the DCS protocol in order to select an alternative channel, previously checked to be clear of SSUs. For improved coexistence with other uncoordinated IEEE 802.16 systems, the BS shall claim a Master frame (15.4.1.2) sequence as described in 5.2.1.3.3 and shall use the described mechanism to share the channel with up to two other IEEE 802.16 systems on a minimally interfering basis.

This clause describes the use of a UCP. The UCP is designed to use passive cognitive radio techniques to allow co-channel coexistence between multiple IEEE 802.16 systems.

5.2.1.2 Uncoordinated coexistence with specific spectrum users (SSUs)

5.2.1.2.1 Overview

Procedures are defined in this subclause that may be used when the IEEE 802.16 system is sharing a frequency band with another system or service to reduce interference to and from other systems, to facilitate coexistence of systems, or to address other reasons. These procedures generally involve mechanisms to facilitate the detection of other users and to avoid and prevent harmful interference into other users. Within these procedures for certain sharing scenarios, regulatory requirements specify that DFS (as defined by ITU-R M.1652 [B52]) shall be used to facilitate sharing with SSUs identified by regulation. A specific spectrum user is a user from a service specifically identified by regulation as requiring protection from harmful interference. When DFS is mandated by regulatory requirements, it shall be implemented according to this specification.

Further, the use of a channel selection algorithm may be required, which results in uniform channel spreading across a minimum number of channels. This specification is intended to be compliant with regulatory requirements such as ECC/DEC/(04)08 [B11]. The timing and threshold parameters used for DFS are specified by each regulatory administration.

The procedures specified in this subclause provide for the following:

- Testing channels for other users including SSUs (5.2.1.2.2)
- Discontinuing operations after detecting other users including SSUs (5.2.1.2.3)
— Detecting other users including SSUs (5.2.1.2.4)
— Scheduling for channel testing (5.2.1.2.5)
— Requesting and reporting of measurements (5.2.1.2.6)
— Selecting and advertising a new channel (5.2.1.2.7)

5.2.1.2.2 Testing channels for other users (including specific spectrum users)

A BS or SS implementing these procedures shall not use a channel that it knows contains other users or has not been tested recently for the presence of other users. A BS shall test for the presence of other users based on timing parameters and values that may be set locally or, in the case of DFS and the detection of specific spectrum users, may be defined in regulation. Timing parameters include the following:

— **Startup Test Period** before operating in a new channel if the channel has not been tested for other users for at least the startup test period during the last startup test valid.
— **Startup Test Period** before operating in a new channel if a channel was previously determined to contain other users during the last startup test valid.
— **Operating Test Period** (where the period is only accumulated during testing) of each operating test cycle while operating in a channel. Testing may occur in quiet periods or during normal operation.

An SS may start operating in a new channel without following the above start-up testing procedures if

— The SS moves to the channel as a result of the receipt of a Channel Switch Announcement from the BS.
— The SS is initializing with a BS that is not currently advertising, using the Channel Switch Announcement, that it is about to move to a new channel.

A BS may start operating in a new channel without following the above start-up testing procedures if it has learned from another device by means outside the scope of this standard that it is usable.

5.2.1.2.3 Discontinuing operations after detecting specific spectrum users

If a BS or an SS is operating in a channel and detects SSUs, it shall discontinue any transmission of the following:

— MAC PDUs carrying data within Max Data Operations Period.
— MAC PDUs carrying MAC management messages within Management Operations Period.

The values of the above parameters may be set locally or, in the case of DFS, may be defined in regulation.

The detection of a specific spectrum user shall mean the channel is unusable for a Channel Exclusion Period. The channel is marked as an Excluded Channel for a period defined by regulation.

5.2.1.2.4 Detecting specific spectrum users

Each BS and SS shall use a method to detect SSUs operating in a channel that satisfies the regulatory requirements, where applicable. The particular method used to perform detection is outside the scope of this standard.

5.2.1.2.5 Scheduling for channel testing

A BS may measure one or more channels itself and may request any SS to measure one or more channels on its behalf, either in a quiet period or during normal operation.
To request the SSs to measure one channel, the BS shall include in the DL-MAP a Channel Measurement IE as specified in 8.3.6.2.3. The BS that requests the SSs to perform a measurement shall not transmit MAC PDUs to any SS during the measurement interval. If the channel measured is the operational channel, the BS shall not schedule any UL transmissions from SSs to take place during the measurement period.

Upon receiving a DL-MAP with the Channel Measurement IE, an SS shall start to measure the indicated channel no later than Max. Channel Switch Time after the start of the measurement period. An SS may stop the measurement no sooner than Max. Channel Switch Time before the expected start of the next frame or the next scheduled UL transmission (of any SS). If the channel to be measured is the operating channel, Max. Channel Switch Time shall be equal to the value of the receive/transmit transition gap (RTG), as specified in Table 8-304, or, in the case of DFS Max. Channel Switch Time, may be defined in regulation.

5.2.1.2.6 Requesting and reporting of measurements

The SS shall, for each measured channel, keep track of the following information:

- Frame Number of the frame during which the first measurement was made
- Accumulated time measured
- Existence of a specific spectrum user on the channel
- Whether a IEEE 802.16 system using the same PHY system was detected on the measured channel
- Whether unknown transmissions [such as radio local area network (RLAN) transmissions] were detected on the channel

The BS may request a measurement report by sending a REP-REQ message. This is typically done after the aggregated measurement time for one or more channels exceeds the regulatory required measurement time. Upon receiving a REP-REQ the SS shall reply with a REP-RSP message and reset its measurement counters for each channel on which it reported.

If the SS detects a SSU on the channel where it is operating during a measurement interval or during normal operation, it shall immediately cease to send any user data if so mandated by regulatory requirements and send at the earliest possible opportunity an unsolicited REP-RSP. The BS shall provide transmission opportunities for sending an unsolicited REP-RSP frequently enough to meet regulatory requirements, where applicable. The SS may also send, in an unsolicited fashion, a REP-RSP when other user interference is detected above a threshold value.

5.2.1.2.7 Selecting and advertising a new channel

A BS may decide to stop operating in a channel at any time. The algorithm used to decide to stop operating in a channel is outside the scope of this standard, but shall satisfy any regulatory requirements.

A BS may use a variety of information, including information learned during SS initialization and information gathered from measurements undertaken by the BS and the SSs, to assist in the selection of the new channel. The algorithm to choose a new channel is not standardized but, in the case of DFS, shall satisfy any regulatory requirements, including uniform spreading rules and channel testing rules. If a BS would like to move to a new channel, a channel supported by all SSs in the sector should be selected.

A BS shall inform its associated SSs of the new channel using the Channel Nr in the DCD message. The new channel shall be used starting from the frame with the number given by the Channel Switch Frame Number in the DCD message. The BS shall not schedule any transmissions during the last Max. Channel Switch Time before the channel change is to take place.

The Uplink Burst Profiles used on the old channel defined shall be considered valid also for the new channel, i.e., the BS need not define new Uplink Burst Profiles when changing channels. When operating in license-exempt bands, the BS shall not send the Frequency (Type = 3) parameter as a part of UCD message.
5.2.1.3 Uncoordinated coexistence with non-specific spectrum users (non-SSUs)

5.2.1.3.1 Overview

This subclause considers uncoordinated coexistence mechanisms for use in bands where non-SSUs are present. The important distinction for coexistence with non-SSUs, when compared with SSUs (5.2.1.2), is that there are less stringent, if any, regulatory demands placed on the coexistence solution. Aspects where requirements may be relaxed include monitoring resource requirements and accompanying detection times, probability of detection requirements, or time to vacate the operating channel. When a non-SSU is detected it is not mandated that the operating channel be vacated, it may be possible to use a more robust modulation scheme, or use an AAS beamforming approach to focus energy and reduce interference; however, to meet with some guidelines on coexistence in license-exempt bands then channel changing to a less interfered channel may be a preferred option. One realization of uncoordinated coexistence with non-SSUs is termed Dynamic Channel Selection (DCS).

5.2.1.3.2 Dynamic Channel Selection (DCS)

Dynamic Channel Selection (DCS) is an uncoordinated coexistence mechanism that provides the ability for a system to switch to a different physical frequency channel, based on channel conditions, and thereby avoid interference in license-exempt bands. DCS can be used as a means of finding a least interfered channel at system startup or can be used during normal system operation to provide constant interference monitoring capabilities and, with the ability to monitor other channels, provide a list of alternative channels for informed switchover to a different, less interfered, channel. An illustrative example is given in Figure 5-13 for possible behavior at the BS, while Figure 5-14 illustrates the behavior at the SS. DCS may be used when the interference is caused by other IEEE 802.16 systems or by non-IEEE 802.16 systems (e.g., IEEE 802.11 systems).

Quiet periods for measurement are scheduled by the BS via the DL-MAP and the UL-MAP for the BS and SS respectively, with measurements provided, for example, by an OFDM Periodic Channel Measurement IE (see 8.3.6.2.10) and OFDMA Periodic Channel Measurement IE (see 8.4.5.3.34). These mechanisms are supported with the REP-REQ/REP-RSP (6.3.2.3.33) MAC messages to provide reports of incident interference. Once a channel is deemed unusable due to prevailing interference that has surpassed the acceptable threshold or degraded the BER sufficiently, the BS may choose to move to a new channel. This new channel may be unmeasured or a member of an alternative list of available channels previously measured by the BS or SSs. The number of alternative channels that can be monitored depends on the spare channel capacity available. Also the “freshness” of a channel (in terms of when the channel was last measured and how accurate the measurement is likely to be) may also depend on available resources to accomplish this task. The previously interfered channel that was vacated may be monitored for usability after some defined period. Figure 5-13 and Figure 5-14 provide an example of how DCS can be used to provide resource management and alternative operating channels.

An example of a DCS solution is provided in Figure 5-15 in which interference detection results in a channel change. Figure 5-15 indicates the events that occur following interference detection at the BS. The DCS algorithm has a choice to either vacate the channel or overcome the interference by using a more robust modulation scheme. The Channel Measurement IE, containing a reference to the ChCtrFr, is used to make the channel change. A similar procedure is followed for interference detection at the SS, illustrated in Figure 5-16; however, in this case, the REP-RSP message, sent by the SS in an unsolicited manner, initializes the response by the BS.

The mechanism given in 5.2.1.2 may be used to maintain a list of available alternative channels for use in the event interference is detected on a channel that needs vacating due to high levels of interference.
Figure 5-13—Flowchart showing generic operation at the BS in bands with non-SSUs only
Figure 5-14—Flowchart showing generic operation at the SS in bands with non-SSUs only

* The definition of best for this purpose shall be left for vendor differentiation, but can be used to mean least interfered.

Figure 5-15—Interference reporting and remedial action at the BS

Figure 5-16—Interference reporting and remedial action at the SS
5.2.1.3.3 Frame structure and frame allocation

Co-channel coexistence between multiple IEEE 802.16 systems is achievable by the sharing of frames, whereby advantage is derived from the synchronous behavior of IEEE 802.16. This sharing is reliant upon a known frame allocation and network synchronization. The mechanism for co-channel coexistence at the frame level is related to the band of operation, but all BSs shall follow the procedures in 15.2. Situations exist where frames may be assigned to IEEE 802.16 systems by administrative means within the context of a 4-frame structure. This administrative provisioning eliminates the need to support a discovery protocol, and an a priori knowledge of frame allocation patterns. Such situations occur, for example, in bands where a regulatory requirement demands device registration together with information on device location. It is therefore possible to make use of this location information and make informed decisions on which systems should be assigned to which frames. Administrative provisioning shall therefore be used if sufficient information is available, otherwise a discovery protocol or standardized frame structure shall be used.

The frame structure based on the CX-Frame is described in 15.4. The systems compliant with UCP shall not use Slave subframes.

When all systems attempting to coexist on the same channel are IEEE 802.16 systems, the end result after all three systems have entered the channel is a four frame sequence of frame usage as shown in Figure 5-17. This is a simplified version of Figure 15-19.

Initially when the channel has no occupants, the first system to operate on the channel shall claim a slot within the repetitive sequence as Master. While a system may be administratively allowed to borrow unused slots a system shall claim no more than a single slot as Master. It does not matter which slot the first system claims although it is highly recommended that all BSs on the given channel belonging to the same network operator claim the same slot as this will reduce the need for operator coordination. Operator coordination is necessary when there are conflicts that are not resolved automatically. If there are two operators on the same channel, operating in the same geographic location, and the equipment of the first has randomly chosen a different Master allocation in each cell, then it becomes much more difficult for the equipment of the second operator to automatically select non-interfering allocations. Any unresolved cases of interference should be resolved through operator coordination.
The result of the first system claiming slot 1 of the repetitive sequence is shown in Figure 5-18.

Figure 5-18—First IEEE 802.16 system claiming slot 1

The result after a second system has claimed slot 2 is shown in Figure 5-19.

Figure 5-19—Second IEEE 802.16 system claiming slot 2

The result after a third system has claimed slot 3 is shown in Figure 5-20. This creates the basic 4-frame sequence originally described.

Figure 5-20—Third IEEE 802.16 system claiming slot 3
6. TLV encodings

6.1 Common encodings

Common TLV fields and their associated type codes are presented in Table 6-1.

Table 6-1—Type values for common TLV encodings

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>CSGID</td>
</tr>
<tr>
<td>116</td>
<td>HR multicast service flow update mapping info</td>
</tr>
<tr>
<td>117</td>
<td>ABS information for direct HO</td>
</tr>
<tr>
<td>118</td>
<td>Network address for intersystem communication</td>
</tr>
<tr>
<td>119</td>
<td>UCD encodings</td>
</tr>
<tr>
<td>120</td>
<td>DCD encodings</td>
</tr>
<tr>
<td>121</td>
<td>SA-SZK-Update</td>
</tr>
<tr>
<td>122</td>
<td>Path Info</td>
</tr>
<tr>
<td>123</td>
<td>Path CID Binding Update</td>
</tr>
<tr>
<td>124</td>
<td>Path Addition</td>
</tr>
<tr>
<td>125</td>
<td>Path ID</td>
</tr>
<tr>
<td>126</td>
<td>Bi-directional service flow</td>
</tr>
<tr>
<td>127</td>
<td>MCID Continuity and Transmission Info</td>
</tr>
<tr>
<td>128</td>
<td>MCID Pre-allocation and Transmission info</td>
</tr>
<tr>
<td>129</td>
<td>Query ID</td>
</tr>
<tr>
<td>130</td>
<td>MIHF frame type</td>
</tr>
<tr>
<td>131</td>
<td>MIHF frame</td>
</tr>
<tr>
<td>132</td>
<td>Verbose NSP Name List</td>
</tr>
<tr>
<td>133</td>
<td>NSP List</td>
</tr>
<tr>
<td>134</td>
<td>Paging Information</td>
</tr>
<tr>
<td>135</td>
<td>Paging Controller ID</td>
</tr>
<tr>
<td>136</td>
<td>MAC Hash Skip Threshold</td>
</tr>
<tr>
<td>137</td>
<td>Next Periodic Ranging</td>
</tr>
<tr>
<td>138</td>
<td>SLPID_Update</td>
</tr>
<tr>
<td>139</td>
<td>Enabled-Action-Triggered</td>
</tr>
<tr>
<td>140</td>
<td>Short-HMAC tuple</td>
</tr>
<tr>
<td>141</td>
<td>CMAC tuple</td>
</tr>
<tr>
<td>142</td>
<td>SA-TEK-Update</td>
</tr>
</tbody>
</table>
Table 6-1—Type values for common TLV encodings *(continued)*

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>Vendor-Specific Information</td>
</tr>
<tr>
<td>144</td>
<td>Vendor ID Encoding</td>
</tr>
<tr>
<td>145</td>
<td>Uplink Service Flow</td>
</tr>
<tr>
<td>146</td>
<td>Downlink Service Flow</td>
</tr>
<tr>
<td>147</td>
<td>Current Transmit Power</td>
</tr>
<tr>
<td>148</td>
<td>MAC Version Encoding</td>
</tr>
<tr>
<td>149</td>
<td>HMAC Tuple</td>
</tr>
</tbody>
</table>
7. Management interfaces and procedures
17. Support for Multi-tier Networks

17.1