Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [IG DEP Activity for Amendment of 15.6 BAN with Enhanced Dependability]

Date Submitted: [13 January 2021]

Source: [Ryuji Kohno1,2, Takumi Kobayashi1] [1; Yokohama National University, 2; Centre for Wireless

Communications(CWC), University of Oulu]

Address [1; 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan 240-8501

2; Linnanmaa, P.O. Box 4500, FIN-90570 Oulu, Finland FI-90014]

Voice:[1; +81-45-339-4115, 2:+358-8-553-2849], FAX: [+81-45-338-1157],

Email:[1: kohno@ynu.ac.jp, kobayashi-takumi-ch@ynu.ac.jp]

Abstract: [This document summarizes IG-DEP activity for amendment of IEEE802.15.6 -2012 Medical Body Area Network(BAN) corresponding to increasing demand for enhanced dependability in wireless sensing and controlling human and car bodies for medical healthcare and automotive uses. After quick overview of IEEE802.15.6 -2012, necessity of the amendment is described in such critical use cases that various types of interference such as intra BAN interference in multiple overlaid BANs, interference among BAN and other PANs in some overlaid frequency band etc. Extension of BAN from human body for medical healthcare to car body for automotive uses and their combination are discussed as a common standard.]

Purpose: [information]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

IG-DEP Activity for Amendment of IEEE 802.15.6 BAN with Enhanced Dependability

Ryuji Kohno (YNU/CWC UofOulu) Takumi Kobayashi (YNU)

Agenda

- 1. Demand for WBAN for Emergent Medical Healthcare Use and Huge Market of Automotive Use
- 2. Short Review of WBAN Standard IEEE802.15.6-2012
- 3. Necessity and Uniqueness for Amendment of BAN with Enhanced Dependability
- 4. Available Technologies in PHY and MAC Layers for the Focused Amendment of std 15.6 BAN with Enhanced Dependability
- 5. Technical Requirement for the Amendment of Std. 15.6 to Enhance Dependability

1. Demand for WBAN for Emergent Medical Healthcare Use and Huge Market of Automotive Use

1.1 Demand of BAN for Medical Uses

- A. Emergent Problems over the world:
 - 1-4% of total population in a world may be suffered by COVID-19, that is a global pandemic.
 - Clinic are overloaded and many business are damaged seriously.

Population Ageing

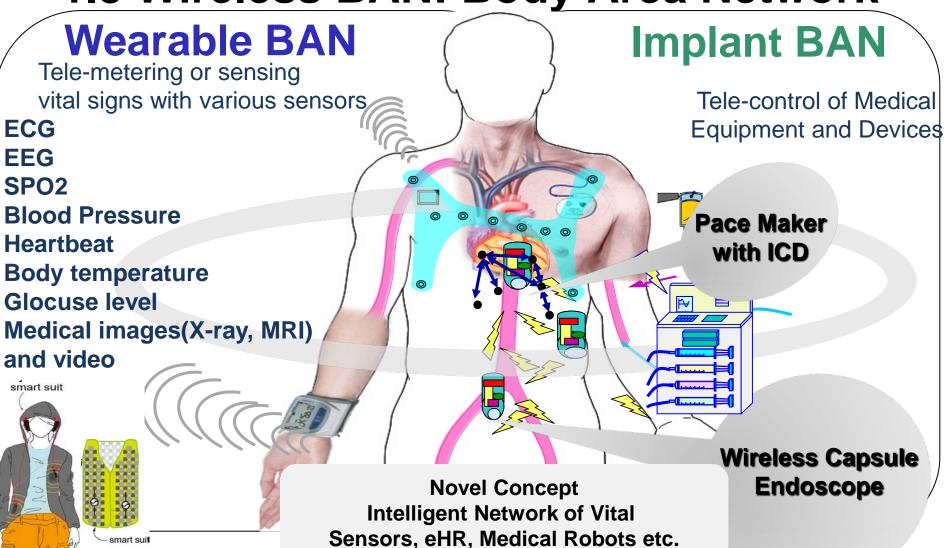
- **B. Challenging but Feasible Solutions:**
 - ◆ Provide Remote Vital Sensing and Therapy Using ICT and Al
 - → Prevent Epidemic and Maintain Safe and Efficient Diagnosis
 - **♦ Promote Global Business of Medical ICT and Data Science**

- C. Approach:
- (1) R&D of Enable Technologies for Pandemic and Daily QoL
- (2) Promote International Standard of Wireless Body Network (BAN) and Integrated Platform of BAN/5G/AI for Global Marketing
- (3) Regulatory Compliance of Medical Devices & Services to Ensure Safety, Reliability, Security, i.e. Dependability by Regulatory Science

1.2 Medical Inspection and Treatment by BAN

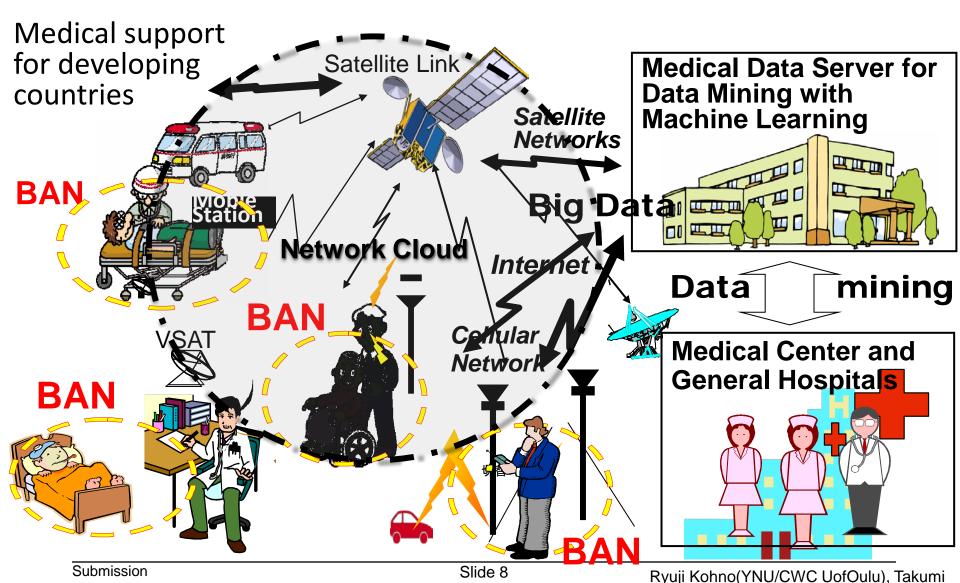
Medical Healthcare Using BAN can perform remote real-time medical diagnosis and therapy

- To prevent pandemic against **COVID-19** and medical care incident etc. in daily life.
 - > Remote sensing vital sign and monitoring symptoms
 - > Evidence based medicine for clinical and núrsing actions
- •To support safe and efficient medical care for clinical staffs and patients etc.

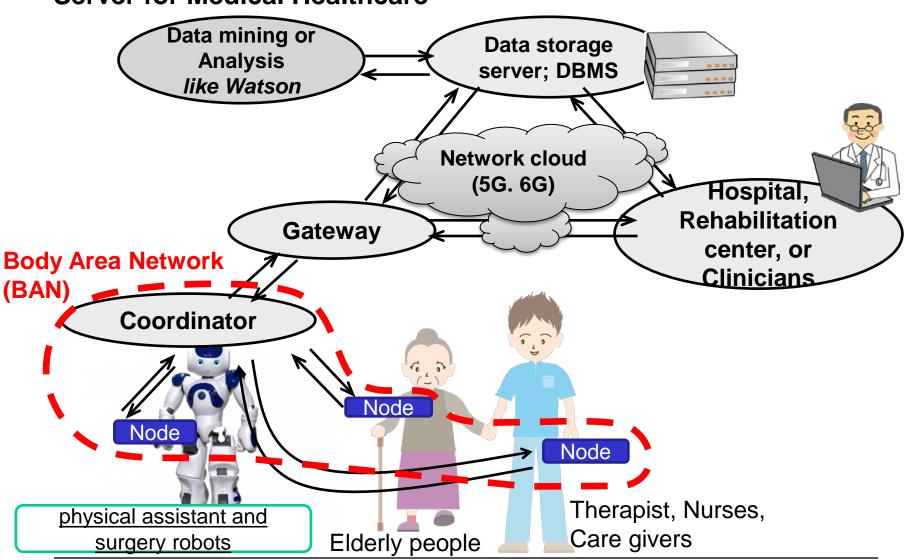

> Online diagnosis, PCR and other inspection

> Protect clinical staffs and care givers with network Server on Medical S Common symptoms: Fever: 83-99% Loss of Appetite: 40-84% Confusion WBAN can apply for Fatigue: 44-70% Bluish face or lips Loss of smell: 15 to 30% Coughing up blood preventing pandemic and Shortness of Persistent chest pain supporting daily care by breath: 31-40% Decreased white Cough: 59-82% blood cells Coughing up remote sensing and therapy sputum: 28-33% Kidney failure in digital healthcare. **Symptoms of COVID-19**

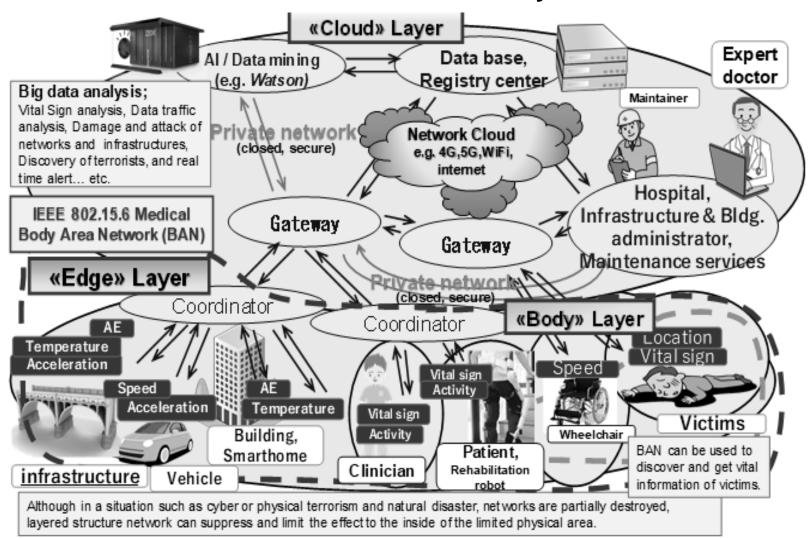
6

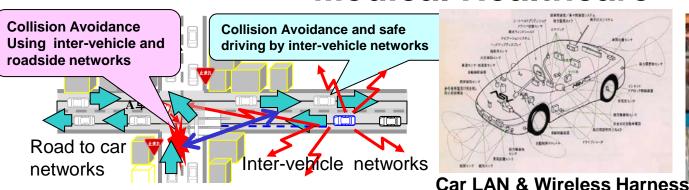

Coronavirus

1.3 Wireless BAN: Body Area Network



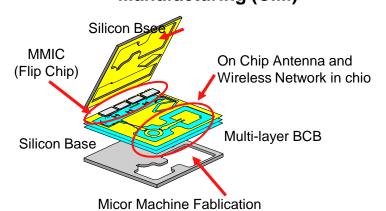
Kobavashi(YNU)


1.4 BAN- Use Cases for Remote Medical Services


1.5 AN-base Universal Platform with Network Cloud, Data Mining Server for Medical Healthcare

1.6 Universal Platform Based on BAN, Cloud Network, and Al Data Server for General Social Infrastructure beyond Medical Services

1.7 Extension of Use Cases of BAN beyond **Medical Healthcare**

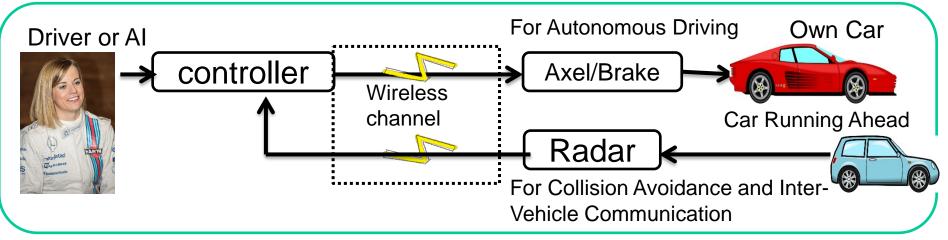

現の世界をもって

Car Navigation & Collision Avoidance Radar

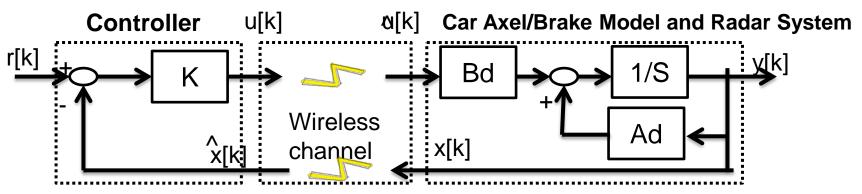
Dependable Wireless Networks for Transportation

Wearable BAN Implant BAN Tele-metering vital data **Tele-controlling** EEG. implant devices ECG. **Blad Pressure** UWB can solve Temperatute such a problem MRI images that radio interferes Etc. Pacemaker a human body and with IAD medical equipments Dependable Network among vital Capsule sensors, actuators, robots Endoscope

Factory Automation (FA) **Dependable Wireless Sensing** & Controlling for Manufacturing (CIM)



Dependable Wireless System Clock in Micro Circuit & Network in Devices


Dependable BAN for Medical Healthcare Submission Slide 11

Ryuji Kohno (YNU, CWC, CWC-Nippon), Jussi Haapola(CWC)

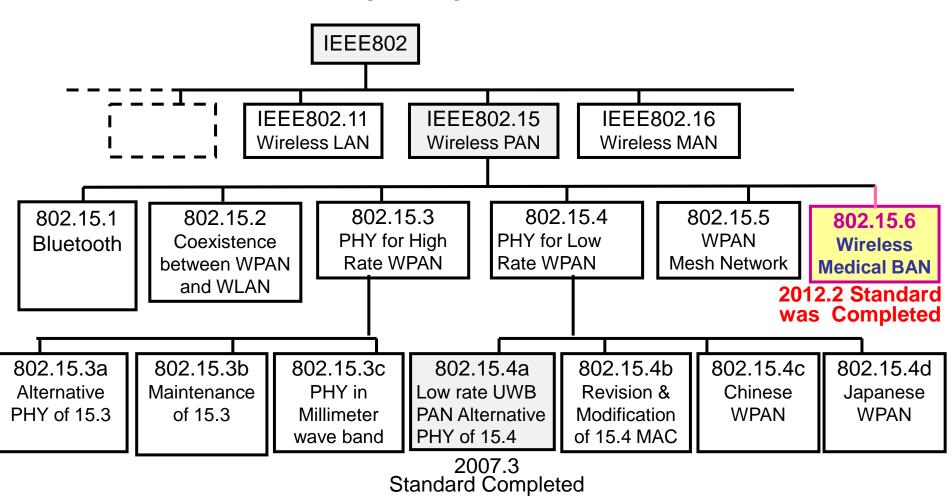
1.8 Use of BAN for Autonomous Car Driving

Wireless Feedback Sensing and Controlling Loop for Autonomous Driving

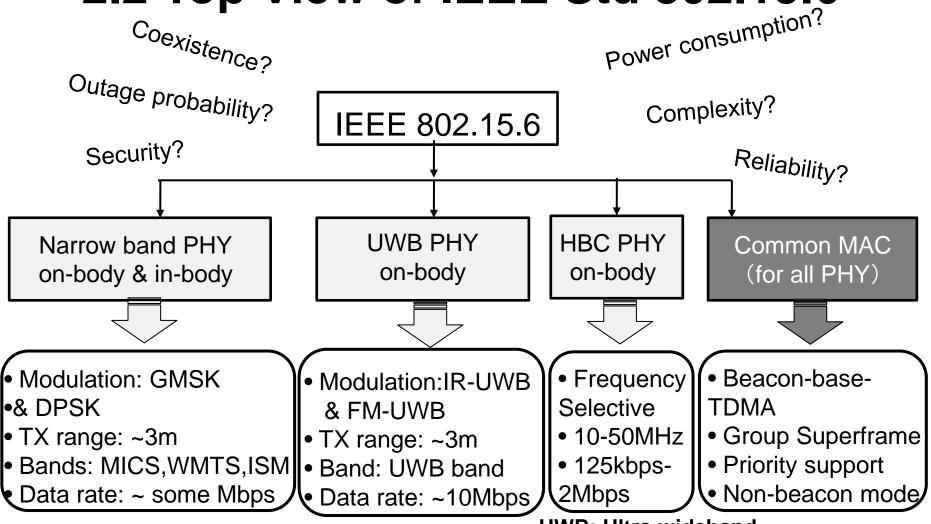
Feedback Delay Loop Model with Motion Equation

1.9 Use case in Factory Manufacturing Line; Detection of Twist and Cut of Cables

Prediction and Real-time Detection of twist and cut in signal and power cables


In order to improve QoS of controlling robots in factory lines, real-time sensing and controlling with permissible feedback control loop must be important requirement

Sensing twist and cut of cables


Sensing imperfect measurement

2. Short Review of WBAN Standard IEEE802.15.6-2012

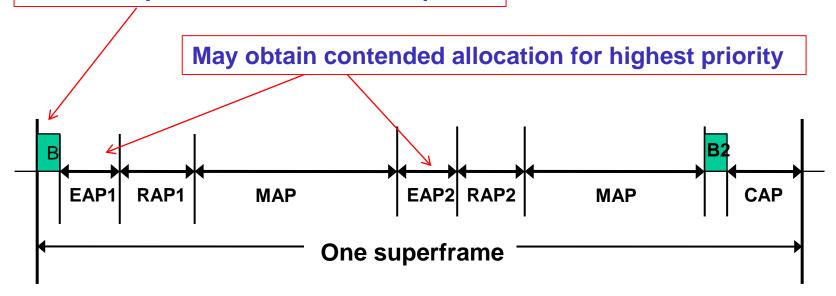
2.1 Standard of Medical Wireless Body Area Network(BAN);IEEE802.15.6

2.2 Top View of IEEE Std 802.15.6

UWB: Ultra-wideband

HBC: Human body communication

2.3 User Priority Mapping

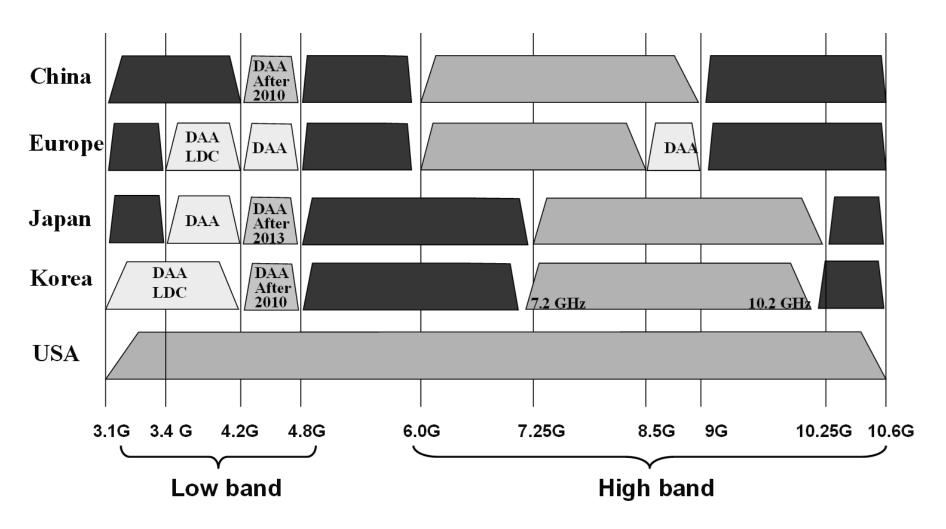

Priority level	Traffic designation	Data type	
7	Emergency or medical event report	Data	
6	High priority medical data or network control	Data or management	
5	Medical data or network control	Data or management	
4	Voice	Data	
3	Video	Data	
2	Excellent effort	Data	
1	Best effort	Data	
0	Background	Data	

2.4 Three Channel Access Modes

Channel access mode	Time reference-based (superframe structure)	Beacon	Notes
I	Yes	Yes	Coordinator sends beacon in each superframe except for inactive superframes.
II	Yes	No	Coordinator establishes time reference but doesn't send beacon.
III	No	No	There is not time reference.

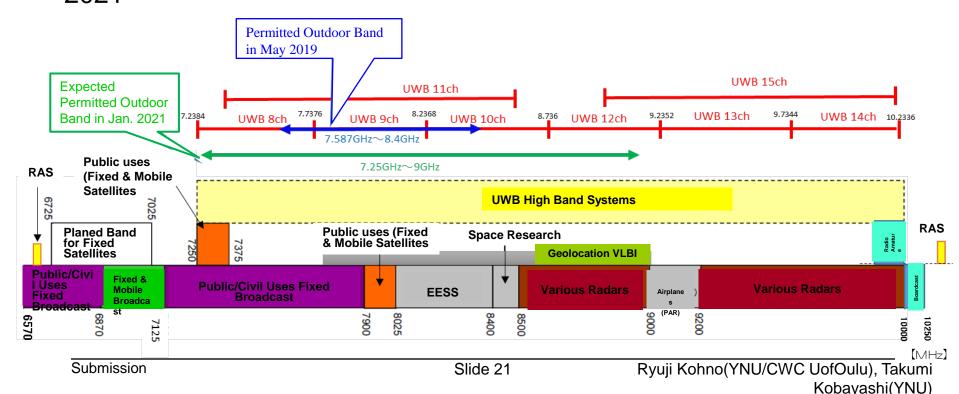
2.5 Time-referenced Superframe w/ Beacon

Clock and position of each access phase


EAP: exclusive access phase

RAP: random access phase

MAP: managed access phase


CAP: contention access phase

2.6 Worldwide UWB Regulations in 2012

2.7 Radio Outdoor Uses in the Frequency Band 7.25-9.00GHz (January 2021)

- Red lines indicate channels defined by IEEE802.15.4a.
- Although Ch 9 in 7.587-8.4GHz Blue line was allowed for outdoor use in May 2019, MIC has started investigation to allow wider band 7.25-9.00 GHz Green line wand it is expected to allow it for outdoor use in January 2021

2.8 Summary of IEEE802.15.6-2012

- A standard, IEEE Std 802.15.6[™] was completed and published in Feb. 2012. In which, specifications of three PHY and common MAC are defined to support various medical and non-medical consumer applications.
- Commercial products of BAN have been sold as an enable technology supporting personal healthcare as a consumer electronics but not much approved for medical equipment.
- In PHY, ultra-wide band(UWB) is applied for high QoS use case but radio regulation for UWB results in restricting use cases.
- In MAC, hybrid contention base and free protocol can perform flexible delay and throughput for variable QoS levels of packets but its implementation complexity is too high for its complete protocol.

3. Necessity and Uniqueness for Amendment of BAN with Enhanced Dependability

3.1 Necessity for Enhanced Dependability in std 15.6 BAN

1. In case of coexistence of multiple BANs

- Current existing standard IEEE802.15.6 has not been designed to manage contention and interference among overlaid BANs. The more BAN uses in dense area, the more contention and inference cause performance degradation.
- Amendment of PHY and MAC for resolving these problems in coexistence of BANs is necessary.

2. In case of coexistence with other radios

 For enhanced dependability, UWB PHY of BAN should be updated to avoid performance degradation due to interference with coexisting other narrow band and UWB networks in overlapped frequency band.

3. In case of feedback sensing and controlling loop

 Remote medical diagnosis with vital sensing and therapy and control actuators and robotics need more dependable and efficient protocol.

4. Usability and Implementation Complexity

- Interoperability with other radio networks, more flexible network topology,
- Transparency with other standards such as ETSI SmartBAN
- Capability of ranging and positioning in UWB is required for mobility and security.

3.2 Technical Challenges for Enhanced Dependability

- First of all, we should recognize that any technology in PHY and MAC cannot guarantee full dependability in every use case.
- However, we can design a new standard which can guarantee a certain level of enhanced dependability in a specific defined use case.
- As an analogy of informed consent in medical doctor to a patient, a
 manufacturer of a dependable wireless network can describe such a
 specific defined use case that <u>the manufacture can guarantee a</u>
 <u>defined level of dependability showing necessary cost and</u>
 <u>remained uncertainty.</u> This is an honest manner and much better
 than no guarantee for any use case.
- Therefore, an expecting standard describes a specific use case in which worst performance can be guaranteed enough high while most of exiting standards have been designed with average performance base.
- Technical requirement for the specific use case can be guaranteed.

3.3 Uniqueness different from existing standards (1/2)

- 1. MAC protocol for around packets and recursive access for feedback loop in remote sensing and controlling;
- Level of dependability can be defined with showing necessary cost and remained uncertainty. This is an honest manner and much better than no guarantee for any use case.
- 3. Worst performance can be guaranteed enough high while most of exiting standards have been designed with average performance base.
- 4. Others

3.3 Uniqueness different from existing standards (2/2)

- 2. PHY technologies to satisfy technical requirement for enhanced dependability in the focused use cases
 - A) In feedback loop for remote monitoring sensors or radars and feedback controlling actuators, real-time cognition of varying condition on site and adaptive reconfiguration in relatively messy, small, and dense areas are requested to guarantee worst performance with permissible delay and errors.
 - B) Within a permissible limited feedback delay, propagation paths connecting between nodes and coordinator should be found to keep connectivity by diversity, channel switching etc. .
 - C) For such a dynamic environment and QoS requirement changing situation, sophisticated PHY technologies are requested to guarantee minimum requirement of performance.

3.4 Focused Issues in Amendment of std 15.6 BAN with Enhanced Dependability

1. MAC Protocol in case of coexistence of multiple BANs

- Amendment of MAC for resolving these problems in coexistence of BANs is necessary.
- Specified MAC protocol for feedback sensing and control loop between coordinator and nodes.

2. PHY Interference Mitigation In case of coexistence with other radios

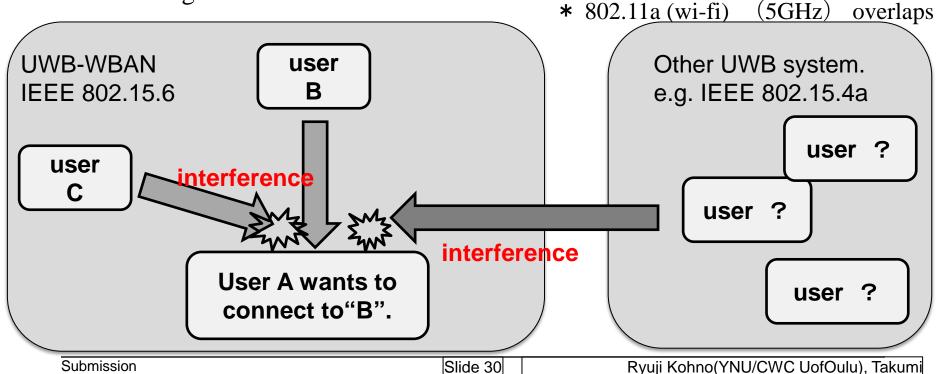
 For enhanced dependability, UWB PHY of BAN should be updated to avoid performance degradation due to interference with coexisting other narrow band and UWB networks in overlapped frequency band.

3. Usability and Implementation Complexity

- Interoperability with narrow band and UWB PHY
- more flexible network topology,
- Transparency with other standards such as ETSI SmartBAN

4. Ranging and Positioning Capability of UWB-BAN

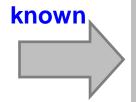
Mobile nodes and coordinator of BAN need ranging and positioning of UWB-BAN


4. Available Technologies in PHY and MAC Layers for the Focused Amendment of std 15.6 BAN with Enhanced Dependability

4.1 Intra and Inter System Interference among BAN and Other PANs

- Inter-user interference
 - IR-UWB uses the same pulse as all users signal in the same standard.
 - Other users signal and/or the other network signal would be interference.

- Inter-system interference
 - Interference from the other wreless system using overlapped frequency band. ⇒ Unknown


Kobayashi(YNU)

4.2 Approach for Intra and Inter System Interference among BAN and Other PANs

- Sparate and Recognize each interference from different source.
 ⇒ Apply suitable interference mitigation method according to source of interference.
- Using both of Spatial and Temporal signal processing.

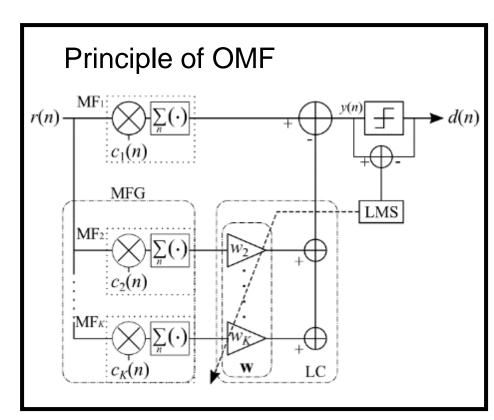
Inter-user interference
 "IUI" in this presentation
 Interference from a system using
 the same pulse

Recognize and demodulate

Pulse shape multiple access Multi-user detection

Inter-system interference
"ISI" in this presentation
Interference from a system using

overlapped frequency



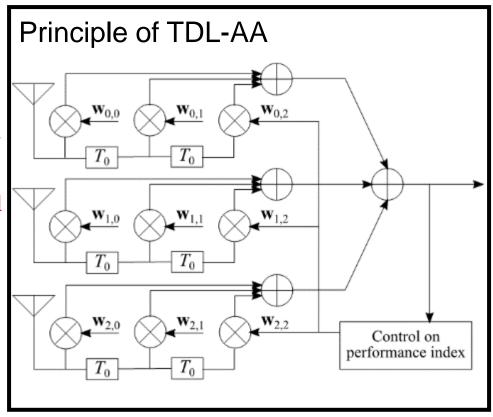
Remove

Interference canceller

4.3 Time Domain Interference Mitigation

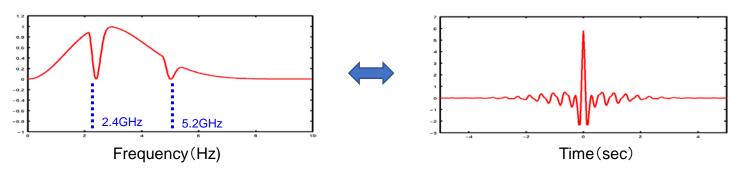
- OMF; orthogonal matched filter
- consists a matched filter (MF₁) and MF Group (MFG)
- Tap coefficients of MF₁ are the same as sequence of desired signal.
- Coefficients of MF₁ and each MF_k that constituting MFG are orthogonal.
- Desired signal does not through MF_{2∼K-1} because orthogonality.
 →only interference can through.
- MFG makes replica of interference signal by lenear combination with weight vector w of linear combiner; LC.
- Subtract interference replica from the output of MF₁.

4.4 Space Domain Interference Mitigation

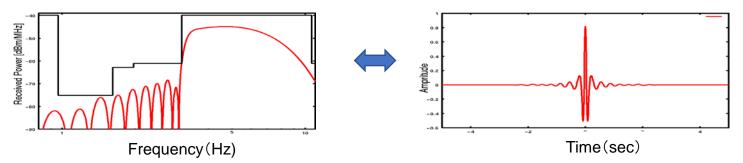

- TDL-AA; Tapped delay line array antenna
- Array antenna by using multiple antenna elements and tapped delay line.
- Each antenna branch has coefficients.
- Transfer function of this antenna has parameters of signal incoming $angle;\theta$ and frequency; ω .

⇒has characteristics of both of spatial and time domain.

$$\begin{split} \tau_n &= n \frac{d}{c} \sin \theta, \\ y(t) &= \exp(j \omega t) \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \exp(-j \omega (\tau_n + m T_0)) w_{n.m}, \\ &= \exp(j \omega t) \times H(\theta, \omega), \end{split}$$


$$H(\theta,\omega) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} w_{n,m} \exp(-jm\omega T_0) \exp(-jn\omega \frac{d}{c}\sin\theta).$$

(Tapped delay line array antenna)

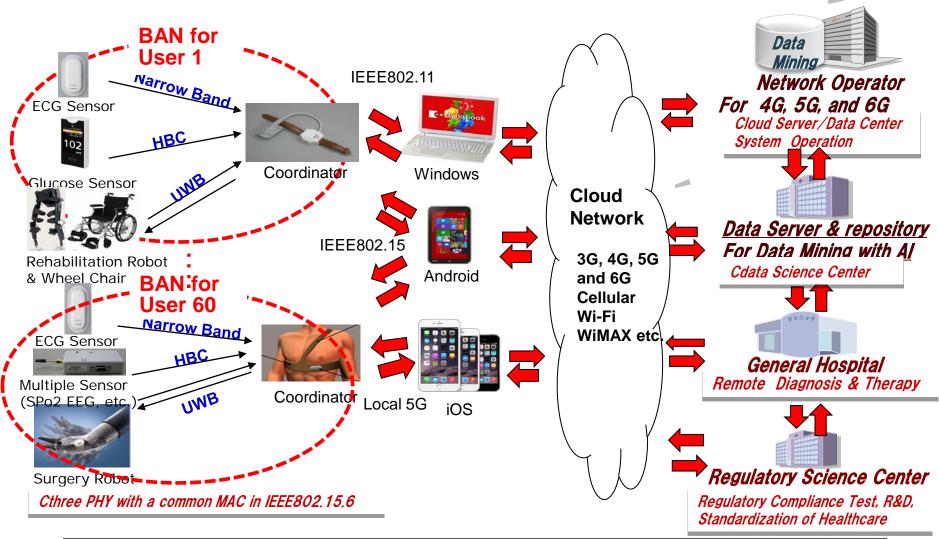


TDL-AA can work as interference canceller on both of time and space domains

4.5 Interference Mitigation among Other Radios

(a) Time Waveform of Pulse (right figure) and its Frequency Spectrum with notches in 2.4 and 5.2GHz for WLAN (left figure)

(b) Time Waveform of Pulse (right figure) and its Frequency Spectrum satisfying spectrum mask (left figure)

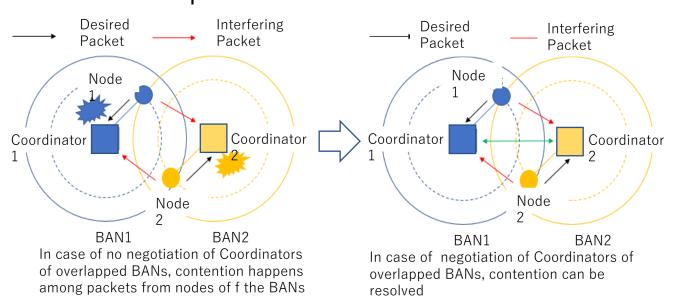

Ref. R.Kohno, H.Zhang, H.Nagasaka, "Ultra Wideband impulse radio using free-verse pulse waveform shaping, Soft-Spectrum adaptation, and local sine template receiving," doc.: IEEE 802.15-03/097r1, March 3, 2003.

4.6 Integrated Terminal to Avoid Mutual Interference in case of overlaid coexisting BAN and other Radios such as UWB-BAN and 4G/5G

Cellular Base Station (Primary BS) **BAN Node** (Secondary User) Cellular Terminal (Primary User) **Integrated Terminal** = (Cellular Terminal + BAN Coordinator) = (Primary User + Secondary BS)

M. Kim, T. Kobayashi, C.Sugimoto, R Kohno, "Transmission Power Control of UWB -WBAN for Avoidance of Interference to Cellular Networks Using Integrated Terminal for Both Networks," International Journal of Computer Science and Telecommunications, ISSN 2047-3338 (Online), Vol. 11, Issue 02, pp.8-15, March 2020

4.7 ICT & Data Science Platform for Infrastructure with BAN, 5G/6G Cloud, and Data Servers Based on Regulatory Science


4.8 Contention among Overlaid BANs

Issue

- Interference problem in the case where multiple BANs overlap (specifically, situations where people with BAN approaching)
- Because the schedule adjustment between the coordinators has not been done

Solution

Negotiation between coordinators, scheduling between different BANs, to prevent deterioration due to inter-BAN interference

What is interference at the MAC layer Sensor nodes within the communication range try to transmit packets at the same timing, causing collisions, making it impossible to communicate correctly

Ref. R.Kohno, S.Ogawa, "MAC Protocol with Interference Mitigation Using Negotiation among Coordinators in Multiple Wireless Body Area Networks (BANs)," IEEE802.15 doc.#15-19-0119-00-0dep-ig-dep, Vancouver, Canada, March 12, 2019

5. Technical Requirement for the Amendment of Std. 15.6 to Enhance Dependability

5.1 Update of Technical Requirements for Amendment of BAN

- IEEE802.15.6 for Medical BAN was established in Feb. 2012 and has not been updated for successive applications.
- IG-DEP has been discussing with ETSI Smart BAN for digital healthcare and further medical applications.
- NICT Brain Machine Interface; BMI labs with medical community requests amendment of IEEE802.15.6 for much higher capacity and reliability in IG-DEP, particularly 2nd Generation of ECoG with much more electrodes beyond EEG using UWB technologies.
- IG-DEP has decided to include dependable medical BAN with higher capacity and reliability in focused applications.
- Then updated technical requirement has been discussed.
- The updated requirement will be summarized in next pages.

doc.: IEEE 802.15-21-0023-00-0dep

5.2 Updated Technical Requirements(1/5)

5.2 Chatta I chilical Requirements (1/5)							
	Car	Factory automat ion	UAV(Dron e)Sensing &Control	High Data Rate BAN (HRP)	Low Data Rate BAN (LRP)	Dependable BAN including Car Body as well as Human and Robotic Body	Reference standard 802.15.6
Number of sensors	Up to ten per netw ork	Up to ten per network	Up to ten (ex. camera, GPS etc.)	Up to 4096	Up to 256	128, 64, 32, 16, 8, 4, 2 nodes for each unit. In case of Human body,4 units can cover 256 nodes as the same as 15.6. In case of Car body, M>4 units can cover 64xM nodes in layer structure. Class A; node transmitting periodical packets Class B: node doing non-periodical ones.	256 For 2 nd G ECoG BMI 128x32, 64x64 32x128, 16x256, 8x512 4x1024. 2x2048
Support for multiple network co- existence & interoperab ility	Less than 100	Up to 100	Up to ten (ex. at least 4 drones for relative localization)	Single	Up to 3 BANs	Less than 64 units. 1 unit contains 64 sensors. Includes multiple BANs overlaid. Other choices are 32 nodes/unit and max no. of units is 100 Ref. 64 sensors x 64 Units = 4,096 sensors that is sufficient for 2 nd G ECOG BMI	O Not expected multiple BANs overlaid
Topology	Exten ded star	Star + bus	Star(dynami c allocation of coordinator)	Star(2pairs)	Star+multi hop	Star +multiple hop or Star + mesh Due to relationship with smart BAN and smart M2M Two layered cluster tree	(extended) star+one hop
Data rate	Com parab le to CAN, RIM	2 Mbps/se nsor	Up to several ten Mbps/cam era/drone	Up to 1KHzx12 =12kbps/se nsor	Aggregate rate up to 2Mbps	2 Mbps For high QoS(priority) packets, 1Mbps while shorter back-off time or delay For low QoS packets, 2 Mbps or higher while permissible delay longer	1 Mbps for narrow Band 11 Mbps for UWB in max

Submission

doc.: IEEE 802.15-21-0023-00-0dep

5.2 Updated Technical Requirements(2/5)

					<u> </u>		
	Car	Factory automation	UAV(Drone) Sensing & Controlling	High Data Rate BAN (HRP)	Low Data Rate BAN (LRP)	Dependable BAN for Car Body as well as Human Body	Reference standard 802.15.6
Aggregate data rate over interoperating networks	Few hundred Mbps	Up to 1 Gbps	Up to several Mbps/drone	50 Mbps	2 Mbps	6 hundred Mbps in case of 4 nits x 64 nodes/unit Ref. Satisfying 49Mbps for 2 nd G ECoG BMI	N/A
Latency in normal operation	Comparab le to CAN, RIM or Flex Ray	250 ms to 1s	250 ms to 500 ms	Frame length 10-20 ms Latency 10ms	10 ms to 20ms	250 ms to 1s Ref. to be considered use case of 2 nd G ECoG BMI	Typical 50 to 100 ms Ref. 15.4e
Latency in critical situation	Comparab le to CAN, RIM or Flex Ray	Few ms to 15 ms *	Several 10 ms	5-10 ms	10 ms	100 ms Ref. to be considered use case of 2 nd G ECoG BMI	Less than typical case
Association delay	N/A	<1s	< 100ms	Same direction < 30ms	< 60 ms	< 1 s Ref. to be considered use case of 2 nd G ECoG BMI	Less than 1s Optional requirement
Authenticatio n and security delay	N/A	<1s	N/A	Same direction < 50ms	< 100 ms	< 1 s Ref. to be considered use case of 2 nd G ECoG BMI	Seconds Optional requirement
Delivery ratio requirement	> 99.9%	> 99%	> 99.9%	> 99.9%	> 99% FED I	>95% Ref. to be considered use case of 2 nd G BMI	95%

Reference: Factory Automation critical latency: FFPJ

dossinsw-maruhashi-general-industrialsusage-part1-031 (Yuji Kohno(YNU/CWC UofOulu), Takumi v00 pdf & new-itava-general-industrial-usage-part2-0317-

Kobayashi(YNU)

5.2 Updated Technical Requirements (3/5)

		10000			1	(
	Car	Factory automation	UAV(Drone) Sensing & Controlling	High Data Rate BAN (HRP)	Low Data Rate BAN (LRP)	Dependable BAN including Car Body as well as Human Body	Reference standard 802.15.6
Disconnection ratio (of time)	< 0.01%	< 0.01%	< 0.001%	< 0.01%	< 2%	< 1% to be considered use case of 2 nd G ECoG BMI	?
Synchronizati on recovery time	< 100 ms	< 100 ms	< 70 ms	< 10 ms	N/A	< 50 ms to be considered use case of 2 nd G ECoG BMI	Seconds
Coverage range	6 m	5 m	100m(among drones) some km(with controller)	10cm	50cm	< 10 m Much less coverage for 2 nd G ECoG BMI	< 10 m
Feedback loop response time	< 10 ms	<1s	< 10 ms	< 10ms	< 100ms	< 50 ms Ref. to be considered use case of 2 nd G ECoG BMI	< 500 ms
Handover capability	N/A	<2s	N/A	N/A	N/A	N/A	Not defined
Data packet size	CAN & RIM compatibil ity	10 to 1000 bytes	802.11 compatible	802.11 compatible	802.11 compatible	Up to 255 octets	Up to 255 octets
Submission Slide 42 Ryuji Kohno(YNU/CWC UofOulu), Takumi							•

5.2 Updated Technical Requirements(4/5)

e paatea recimieat requirements (1,e)									
	Car	Factory automation	UAV(Drone) Sensing & Controlling	High Data Rate BAN (HRP)	Low Data Rate BAN (LRP)	Dependable BAN including Car Body as well as Human Body	Reference standard 802.15.6		
Jitter: typical max	5 ms	50 ms	N/A	N/A	N/A	Dependent on Highest QoS	QoS dependen t		
Jitter: critical max: 5% outliers acceptable	5 ms	5 ms	N/A	N/A	N/A	Dependent on Highest QoS	QoS dependen t		
Multi BAN Overlaid (A) Intra network interference	Driver/P asseng ers room: <10	<50 according to coverage range	<10 according to no. of drones cluster	Single(2pairs) according to spacing between BANs	Up to 3 BANs according to covering range	<64 Ref. to be considered use case of 2 nd G ECoG BMI	By a few use case models, worst interference can be defined		
	Engine room: <10			implant	wearable				
Different PANs (B) Inter network interference (number of coexisting networks)	Driver/P asseng ers room: < 5	<10 according to factory condition	<5 according to no. of drones cluster	single Corresponding for interference mitigation technologies	Up to 3 PANS Corresponding to specification of coexisting PANs	<10 Ref. to be considered use case of 2 nd G ECoG BMI	By a few use case models, worst interference can be defined.		
- G. S. I. II. G				Slide 43	Ryuji	Kohno(YNU/CWC UofO	uiu), iakumi		

Kobayashi(YNU)

5.2 Updated Technical Requirements(5/5)

	Car	Factory automation	UAV(Drone) Remote Sensing and Controlling	High Data Rate BAN (HRP)	Low Data Rate BAN (LRP)	Dependable BAN	Reference standard 802.15.6
Channel model resilience	Driver/Pass engers room: Light multipath	Heavy multipath with shadowing	Line of sight (LOS)	Dedicated short distance (DSRC) with line of sight (LOS)	No Line of sight (NLOS) with shadowing and multipath	Dependent on Highest QoS Ref. to be considered use case of 2nd G ECoG BMI	By a few use case models, worst interference can be defined
	Engine room: Heavy multipath with shadowing		No Line of sight (NLOS) using camera	Compliance for safety guide line with SAR & EMC	Compliance for safety guide line with SAR & EMC		

5. Concluding Remark

- Corresponding request from ETSI smart BAN associating with smart M2M, IG-DEP has discussed to focus on internal car network for IoT/M2M connections that is focused on BAN for human, car and robotic bodies.
- As amendment of IEEE802.15.6, MAC for multiple BANs can be guaranteed to satisfy permissible delay or back-off time and throughput of high QoS packets for car, robotic and human BANs while maintaining average performance.
- As amendment of IEEE802.15.6, PHY for UWB radios should be revised for updated UWB regulation. In particular, coexistence among different UWB radios of IEEE802.15 such as 15.4a, 15.4f, 15.4z can be supported. For instance, during CCA, types or features of these UWB radios can be analyzed to control access of packets from each radio.
- To include new use case of 2nd Generation of ECoG for Brain-Machine-Interface(BMI), technical requirement has been updated to cover more units of ECoG sensors.
- We focus on amendment of IEEE802.15.6 for enhanced dependability in PHY and MAC and move on SG/TG/WG to complete the amendment.
- If you have any question and comment, you are welcome to discussion in IG-DEP or TG6a and send content contributions to
- Ryuji Kohno <kohno@ynu.ac.jp> and Takumi Kobayashi <Kobayashi-takumi-ch@ynu.ac.jp>