Submission Title: A Study on Comparison of Polar and LDPC Codes above 100Gb/s Throughput Regime
Date Submitted: 15 July 2019
Source: Onur Sahin, InterDigital Europe
Address: 64 Great Eastern St, InterDigital Europe, London, UK, EC2A 3QR
Voice:+447459205055, FAX:+442077494196 , E-Mail:onur.sahin@interdigital.com
Re: n/a
Abstract: This talk will provide studies on the communication performance and implementation level comparison of LDPC and polar codes for above 100Gb/s throughputs. The comparison will focus on selected LDPC codes standardized in 3GPP 5G NR, IEEE 802.16 WiMAX, IEEE 802.15.3d standards, and state-of-the-art polar codes designed for ultra-high throughputs.

Purpose: Information of the Technical Advisory Group THz
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Exceeding 100 Gb/s Barrier in Wireless Communications

- **Huge available spectrum** potential above 250GHz to achieve 100Gb/s and higher throughputs.
 - 252-325 GHz bands already considered under 802.15.3d.
 - Potential bandwidth allocations: 275-450GHz in WRC 2019 (AI 1.15).

- Substantial progress in **device-level and RF** front-end.
 - THz photonics based RF front-end solutions demonstrate ~100Gb/s ([1]).
 - 300 GHz Si CMOS transceiver solutions with >100Gb/s transmitters ([2]).

- **Novel baseband algorithms and architectures** are necessary to enable ultra-high throughputs in THz domain for a wide range of practical use-cases.
 - **FEC** is the most complex and computationally intense component in the baseband chain → A key enabler and challenge for ultra-high throughput/THz communications.
State-of-the-Art FEC for High Throughput Wireless Systems

In existing wireless standards, 3GPP 5G NR, IEEE 802.15.3d and IEEE 802.11ad* present FEC classes with highest throughput requirements.

- **3GPP 5G NR (Target peak TP: 20Gb/s)**
 - Flexible QC-LDPC; 20 Gb/s with rate 8/9 is supported

- **IEEE 802.15.3d (Target peak TP: 100Gb/s)**
 - Rate 14/15 LDPC (1440,1344)
 - Rate 11/15 LDPC (1440,1056)

- **IEEE 802.11ad (Target peak TP: 7Gb/s)**
 - Rate (1/2, 5/8, 3/4, 13/16) LDPC with code-word length 672

* 802.11ay amendment (Draft 3.0 stage) targets >20 Gb/s, in addition includes Rate (1/2, 5/8, 3/4, 13/16) LDPC-1344. The decoder architectures are based on 11ad LDPC-672 codes.
Motivation

▪ The feasibility of already standardized and/or state-of-the-art FEC should be assessed for practical THz use-cases, in particular for 100Gb/s and above throughput regimes.

▪ It is most essential to identify both communications (e.g. FER) and implementation (e.g. throughput, power, area) performances to have a fair comparison among the codes.

▪ In this contribution, we consider selected codes from 3GPP 5G NR, WiMAX, and 802.15.3d* standards as well as polar codes designed for the target ultra-high throughputs.

* In this contribution, only communications performance of 802.15.3d codes is provided.
Study 1: 5G NR Polar Codes versus LDPC Codes - Implementation Performance

- Length=1024, Rate=1/2, 3GPP 5G NR Polar (eMBB control channel) and LDPC Codes (eMBB data channel)\(^3\).
- Polar codes with successive cancellation decoder, LDPC with Min-Sum decoder (4 & 7 iterations).

![Graph showing FER vs Eb/N0 for different codes](image)

FER \(10^{-7}\) @ 400 Gbit/s
Study 1: 5G NR Polar Codes versus LDPC Codes - Implementation Performance

- Length=1024, Rate=1/2, 3GPP 5G NR Polar (eMBB control channel) and LDPC Codes (eMBB data channel)[3].
- Worst case PVT timing 28nm technology, target frequency 400MHz.
- Fully “unrolled decoder architectures” for both codes @ 400Gbit/s (200Gbit/s coded throughput).

<table>
<thead>
<tr>
<th>Place & Route</th>
<th>Polar SC</th>
<th>LDPC Min-Sum I=7</th>
<th>LDPC Min-Sum I=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>402</td>
<td>339</td>
<td>400</td>
</tr>
<tr>
<td>Throughput (Gbps)</td>
<td>411.2</td>
<td>347.6</td>
<td>409.6</td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>1.4349</td>
<td>6.9455</td>
<td>3.8562</td>
</tr>
<tr>
<td>Area Efficiency (Gbps/mm²)</td>
<td>287</td>
<td>50</td>
<td>106</td>
</tr>
<tr>
<td>Utilization %</td>
<td>75</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Power Total (W)</td>
<td>1.264</td>
<td>8.083</td>
<td>5.051</td>
</tr>
<tr>
<td>Power Clock (W)</td>
<td>0.222</td>
<td>1.352</td>
<td>0.887</td>
</tr>
<tr>
<td>Power Registers (W)</td>
<td>0.178</td>
<td>1.019</td>
<td>0.687</td>
</tr>
<tr>
<td>Power Comb (W)</td>
<td>0.864</td>
<td>5.713</td>
<td>3.477</td>
</tr>
<tr>
<td>Energy Efficiency (pJ/bit)</td>
<td>3.07</td>
<td>23.25</td>
<td>12.33</td>
</tr>
<tr>
<td>Power Density (W/mm²)</td>
<td>0.88</td>
<td>1.16</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Study 1: 5G NR Polar Codes versus LDPC Codes - Implementation Performance

- Length=1024, Rate=1/2, 3GPP 5G NR Polar (eMBB control channel) and LDPC Codes (eMBB data channel)\[^3\].

<table>
<thead>
<tr>
<th></th>
<th>Polar decoder</th>
<th>LDPC decoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.4 mm(^2)</td>
<td>6.9 mm(^2)</td>
</tr>
<tr>
<td>Power</td>
<td>1.2 W</td>
<td>8 Watt</td>
</tr>
</tbody>
</table>
Study 2: Polar Codes versus WiMAX LDPC Codes - Communications Performance

- Length=1024, Rate=5/6 Polar Codes generated with:
 i. 6.5dB density evolution (DE)
 ii. 2dB Gaussian Approximation (GA)
- Length=1056, Rate=5/6 LDPC codes with min-sum (2 iterations)

![Graph showing FER vs Eb/N0 for LDPC/Polar codes]

FER 10^{-7} @400 Gbit/s
Study 2: Polar Codes versus WiMAX LDPC Codes - Implementation Performance

- Rate=5/6, Length=1024 Polar (DE 6.5dB), Length=1056 LDPC Codes[4].
- Worst case PVT timing 28nm technology, target frequency 400MHz.
- Fully “unrolled decoder architectures” for both codes @ 400Gbit/s (333Gbit/s coded throughput).

<table>
<thead>
<tr>
<th>Place & Route</th>
<th>Polar GA</th>
<th>Polar DE</th>
<th>LDPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>402</td>
<td>402</td>
<td>400</td>
</tr>
<tr>
<td>Throughput (Gbps)</td>
<td>411.2</td>
<td>411.2</td>
<td>409.6</td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>1.2135</td>
<td>1.3816</td>
<td>1.6736</td>
</tr>
<tr>
<td>Area Efficiency (Gbps/mm²)</td>
<td>339</td>
<td>298</td>
<td>245</td>
</tr>
<tr>
<td>Utilization %</td>
<td>73</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>Power Total (W)</td>
<td>0.892</td>
<td>1.147</td>
<td>2.037</td>
</tr>
<tr>
<td>Power Clock (W)</td>
<td>0.196</td>
<td>0.228</td>
<td>0.371</td>
</tr>
<tr>
<td>Power Registers (W)</td>
<td>0.161</td>
<td>0.192</td>
<td>0.262</td>
</tr>
<tr>
<td>Power Comb (W)</td>
<td>0.536</td>
<td>0.727</td>
<td>1.404</td>
</tr>
<tr>
<td>Energy Efficiency (pJ/bit)</td>
<td>2.17</td>
<td>2.79</td>
<td>4.97</td>
</tr>
<tr>
<td>Power Density (W/mm²)</td>
<td>0.74</td>
<td>0.83</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Study 2: Polar Codes versus WiMAX LDPC Codes - Implementation Performance

- Rate=5/6, Length=1024 Polar (DE 6.5dB), Rate=5/6, Length=1056 LDPC Codes[^4]

Polar decoder DE
1.4 mm² @ 1.1 W
>1dB gain @ FER 10⁻⁷

LDPC decoder
1.7 mm² @ 2.0 Watt
Study 3: Polar Codes versus 802.15.3d LDPC Codes - Communications Performance

- **FEC classes evaluated:**
 - **802.15.3d LDPC:** Length-1440, Rate=11/15\[^5\]. I=50 iterations.
 - **Polar codes:** Length(L) = 2048, 4096, Rate=11/15. List-size=1,2 (CRC=8bits). Density (D) evolution based code design.

Observation:
- Polar code L=4096, List-size=1 and Polar code L=2048, List-size=2 are able to compete with LDPC codes at SNRs greater than 6dB.
- LDPC code experiences degraded performance at high SNRs (>6dB), a critical range for THz use-cases.

Modulation: QPSK
AWGN channel (BH/FH use-case in 802.15.3d study)
Conclusion

- A thorough investigation of FEC both in terms of communications and implementation performances is necessary for practical THz use-cases.

- The study demonstrates under the same technology (28nm), (frequency, quantization) constraints, and 400Gb/s throughput:
 - 5G NR polar codes with SC (Length=1024, Rate=1/2) outperforms 5G NR LDPC codes with min-sum decoder (Length=1024, Rate=1/2, iter=4,7) both in terms of implementation and communications performances (at least <10\(^{-7}\) FER).
 - Polar codes with SC (Length=1024, Rate=5/6, DE 6.5dB) outperforms WiMAX LDPC codes with min-sum decoder (Length=1056, Rate=5/6, iter=2) both in terms of implementation and communications performances.
 - In terms of communications performance only, Polar codes with Length=4096, List-size=1 and Polar code Length=2048, List-size=2 demonstrate better performance for SNR>6dB.
EPIC Grant Agreement No. 760150

“The EPIC project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760150.”

If you need further information, please contact the coordinator:
TECHNIKON Forschungs- und Planungsgesellschaft mbH
Burgplatz 3a, 9500 Villach, AUSTRIA
Tel: +43 4242 233 55 Fax: +43 4242 233 55 77
E-Mail: coordination@epic-h2020.eu

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The content of this document reflects only the author’s view – the European Commission is not responsible for any use that may be made of the information it contains. The users use the information at their sole risk and liability.
REFERENCES