July 2019

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: 100 Gb/s Real-Time THz Wireless Link Demonstration
Date Submitted: 15 July 2019
Source: Carlos Castro Company: Fraunhofer Heinrich Hertz Institute
Address: Einsteinufer 37, 10587 Berlin, Germany
Voice: +49 30 31002-659 FAX: +49 30 31002-213, E-Mail: carlos.castro@hhi.fraunhofer.de

Re: n/a

Abstract: In order to demonstrate the feasibility of THz systems for a future beyond 5G networks, we have constructed a 100 Gb/s real-time spatially-multiplexed THz wireless link, which operates at a carrier frequency of 300 GHz, and investigated its transmission performance using a broadband digital-coherent modem. In addition, we provide an overview of our previous >100Gb/s transmission experiments to highlight the special characteristics and considerations for purely wireless and for hybrid optic-THz links.

Purpose: Information of the Technical Advisory Group THz

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

100 GB/S REAL-TIME THZ WIRELESS LINK DEMONSTRATION

IEEE 802 Plenary Session,

121st IEEE 802.15 WSN Meeting – Austria Congress Centre

Vienna, Austria – 16.07.2019

Carlos Castro¹, Robert Elschner¹, Thomas Merkle², Colja Schubert¹

1. Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany

2. Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastraße 72, 79108 Freiburg im Breisgau, Germany

carlos.castro@hhi.fraunhofer.de

H2020 EU TERRANOVA: Terabit/s Wireless Connectivity by TeraHertz innovative technologies to deliver Optical Network Quality of Experience in Systems beyond 5G

OUTLINE

Hybrid optical-THz wireless networks beyond 5G

100 Gb/s offline experiments

100 Gb/s real-time experiments

Conclusions

THz communications as enabler for flexible hybrid networks beyond 5G Motivation

- THz wireless data transmission at carrier frequencies in the 100 GHz 1000 GHz range
 - Large bandwidth, compatible with state-of-the-art fibre-optical transmission systems
 - This allows to design flexible hybrid optical-THz wireless networks beyond 5G with seamless interconnections and > 100 Gb/s link capacity

Applications for THz wireless networks

- Applications can be classified in 3 generic technology scenarios:
 - Quasi-Omnidirectional
 - Point-to-Multi-Point (PtMP)
 - Point-to-Point (PtP)

Techniques for THz upconversion

Electrical THz upconversion
 Electrical Mixer
 Antenna
 Antenna
 THz channel

OUTLINE

Hybrid optical-THz wireless networks beyond 5G

100 Gb/s offline experiments

100 Gb/s real-time experiments

Conclusions

275-325 GHz THz frontend waveguide modules (Tx/Rx)

- All-electronic up- and down-conversion
 - LO generation using 2-stage multipliers (x12, x3) and direct-conversion architecture

DSP Algorithms and Modem Functions

- THz PtP LoS channel is very similar to fibre-optical channel: relatively flat within the bandwidth of a signal)
- Typical single-carrier PHY DSP for optical channels can also be used for THz PtP LoS channel (but additional adaptivity required)

All-electronic 100 Gb/s THz wireless transmission experiment (offline)

300 GHz carrier / 23 dBi antennas

- One spatial channel
- Distance (wireless link): 58 cm
- Radiated THz power at Tx: ~14 dBm
- 32 Gbaud 16 QAM
- Raw 128 Gb/s @ BER = 1.1.10⁻²
- Net 100 Gb/s FEC-corrected

Alternative setup: 100 Gb/s transmission using optical upconversion

PIN-PD THz emitter Experimental setup

- Flat frequency response at frequencies around 300 GHz
- Hyper-hemispherical silicon lens couples the THz radiation into free space
- Antenna gain = 21 dBi @ 300 GHz (optical input power: up to 15 dBm)

- BER performance of a wireless 64 Gb/s QPSK and 128 Gb/s 16-QAM THz system
- SD-FEC threshold 2.2E-2: Net rates of 50 Gb/s (QPSK) and 100 Gb/s (16QAM)

- BER performance of a wireless 64 Gb/s QPSK and 128 Gb/s 16-QAM THz system
- SD-FEC threshold 2.2E-2: Net rates of 50 Gb/s (QPSK) and 100 Gb/s (16QAM)
- Non-monotonic behavior:
 - Increasing the Rx power does not always translate into better performance
- Three regions: noise-limited, optimum, non-linear

- BER performance of a wireless 64 Gb/s QPSK and 128 Gb/s 16-QAM THz system
- SD-FEC threshold 2.2E-2: Net rates of 50 Gb/s (QPSK) and 100 Gb/s (16QAM)
- Non-monotonic behavior:
 - Increasing the Rx power does not always translate into better performance
- Three regions: noise-limited, optimum, non-linear

- BER performance of a wireless 64 Gb/s QPSK and 128 Gb/s 16-QAM THz system
- SD-FEC threshold 2.2E-2: Net rates of 50 Gb/s (QPSK) and 100 Gb/s (16QAM)
- Non-monotonic behavior:
 - Increasing the Rx power does not always translate into better performance
- Three regions: noise-limited, optimum, non-linear

I/Q distortions 100 Gb/s offline experiments: Results

- The assumption that the performance worsens due to non-linearities is further investigated
 - Modulation is turned off → unmodulated THz carrier
- Some non-linear compression can be observed at high received THz power levels
 - Distortion of the circular shape
 - Symmetric compression of the signal
- Improved component linearity required to support higher-order modulation formats

OUTLINE

Hybrid optical-THz networks beyond 5G

100 Gb/s offline experiments

100 Gb/s real-time experiments

Conclusions

2x2 MIMO setup 100 Gb/s real-time THz wireless transmission

- Fibre-optical BBU, originally designed for 34 GBd PDM-QPSK, is used for a THz wireless link
- To carry the 34 GBd PDM-QPSK data over a 50 cm-long wireless link, two pairs of Tx/Rx THz elements are used
 - Each Tx/Rx pair transports one spatial channel
- The BBU's DSP scheme is a standard approach used for contemporary fiberbased 100 Gb/s and 200 GB/s solutions

Evaluation of pre-FEC BER

100 Gb/s real-time THz wireless transmission

- Long-term stable (>150h hours) pre-FEC below SD-FEC threshold (3.4·10⁻²)
 - 34.34 GBd PDM QPSK
 - 50 cm THz transmission at 300 GHz
 - Mean pre-FEC BER around 8.2 · 10⁻³

- During the duration of the experiment, no erroneous bits were found after decoding
 - Error-free transmission ensured by SD-FEC scheme

Experiments using a 100 GbE traffic generator 100 Gb/s real-time THz wireless transmission

- Latency from BBU (cross-connection + DSP) and THz system: ~8.5 μs *
- Frame loss rate: 1.8 frames per minute (0.03 fps) *
- Measured throughput: 86.5 98.08 Gb/s (depending on the frame size) *

* This work has been submitted to IEEE Globecom 2019

Conclusions Towards high-capacity THz wireless networks beyond 5G

- A wide range of applications can be envisioned for THz wireless links with high capacity and high range, in particular in hybrid optical-THz wireless networks beyond 5G
- Experimental demonstrations of error-free 100-Gb/s THz Wireless Transmission over 0.5 m
 - Offline: SISO 32-GBd 16QAM offline
 - Real time: 2x2 MIMO 32-GBd QPSK
- Required next steps in order to increase capacity, range and flexibility:
 - Use high-gain antennas (55 dBi)
 - Design highly linear, high output power electronic front-ends for larger constellation sizes
 - Adaptive PHY DSP to cope with channel dynamics
- Next research goal: Use 100 Gb/s real-time THz link demonstrator in real network scenarios

Conclusions Towards the standardization of THz communications

• Fraunhofer HHI would welcome the formation of a Study Group on THz communications

- Objective: High-capacity (>100 Gb/s) THz links in the range of hundreds of meters within a hybrid optic-THz wireless network scenario
- Use cases: Wireless fronthaul/backhaul links to provide an alternative point-to-point link in case fiber deployment is too complicated/expensive due to the terrain's characteristics
- Technical SotA: Stability and technical feasibility of THz transmission link has been experimentally demonstrated for high-capacity data transmission (>100 Gb/s)

Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI

WE PUT SCIENCE INTO ACTION.

This work was supported by the Fraunhofer Internal Programs under Grant No. MAVO 836 966 and by the EC Horizon 2020 Research and Innovation Program under grant agreement No. 761794.

Contact:

MSc. Carlos Castro carlos.castro@hhi.fraunhofer.de +49 30 31002 659

Einsteinufer 37 10587 Berlin

carlos.castro@hhi.fraunhofer.de

