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• Over the last few years, wireless data traffic has 
drastically increased due to a change in the way we 
create, share and consume information:
More devices: 8.6 billion mobile devices connected 

to the Internet world wide, which generated a total of 
11.5 exabytes per month of mobile data traffic in 2017
 12.3 billion mobile-connected devices by 2022

 Faster connections: Wireless data rates have 
doubled every 18 months over the last three decades
Wireless Terabit-per-second (Tbps) links will 
become a reality within the next 5 years

Motivation
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Spectrum Opportunity

Everything: Radio, TV, 
Cellular Systems, Wi-Fi, 
Radar, GPS, etc. 

0 1 2 3 4 5 6 7 8 9 10
THz

Optical 
Wireless 
Systems

The THz Band:
No man’s land

…
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• Objective: To establish the theoretical and experimental foundations of ultra-
broadband communication networks in the THz band (0.1–10 THz)

Our Research: Terahertz-band 
Communication Networks

THz 
Materials & Devices

THz 
Channel

THz
Networks

THz 
Communications

• Error and Flow 
Control

• Medium Access 
Control

• Relaying
• Routing

• THz 
Source/Detector

• THz Modulator/
Demodulator

• THz Antennas 
and Arrays

• Propagation 
Modeling (multi-
path, 3D, 
indoor/outdoors)

• Capacity 
Analysis

• Modulation
• Coding
• Synchronization
• Ultra-Massive 

MIMO

Experimental and Simulation 
Testbeds
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• The huge bandwidth provided by the THz band opens 
the door to a variety of applications:

Applications

Macroscale
Networking Scenarios

Nanoscale 
Communication 

Paradigms

Exploit the huge 
bandwidth available at 

THz frequencies

Leverage the very small 
size of THz transceivers 

and antennas
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Applications: 
Terabit Wireless Personal Area Networks

Terabit “wireless” wires
AA 7



Applications: 
Terabit Small Cells / WiFi

Small Cell
Base Station

Directional 
THz Links

Multi-hop
THz LinkUp to few Tbps 

for distances 
around 10 meters
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Applications:
Secure Ultra-broadband Links

Through weather
(clouds, rain, fog) 
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Propagation 
towards hostile 
observers protected 
by atmospheric 
absorption



Applications: Ultra-broadband Satellite 
Communications

IEEE 802.15-19-0108—00-
0thz_Experimental Demonstration 10AA

Terabit-per-second 
backhaul in the Sky



• The huge bandwidth provided by the THz band opens 
the door to a variety of applications:

Applications

Macroscale
Networking Scenarios

Nanoscale 
Communication 

Paradigms

Exploit the huge 
bandwidth available at 

THz frequencies

Leverage the very small 
size of THz transceivers 

and antennas
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Application:
Massive Wireless Network On Chip

Communication across 
processing cores for high 
performance computing 
architectures
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Applications:
Wearable Nano-bio-sensing Networks

Photonic Smart Band Biophotonic Nano-chip
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Biomolecule binding

To Cloud-based 
Database

Our target: Lung cancer monitoring and early detection
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Applications:
Brain Machine Nano-Interfaces

14AA

Nano-antenna Nano-transceiver Nano-processor

Nanosensors Nano-memory Nano-battery

Power Nano-generator

Nanoactuators

1-10 μm

1-10 μm



Applications:
The Internet of Nano-Things

Wearable / 
Over-the-body
Nano-Things

Personal 
Electronic 
Devices

Nano-node
Nano-controller
Nano-to-micro Interface

Other
Nano-Things

Nano-link
Micro-link

Gateway (Towards Internet)
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• Open Challenge:
 Development of compact, energy-efficient systems able to 

generate, modulate, radiate, detect and demodulate THz 
signals

• Ongoing solutions:
 Photonics approach:

• Frequency-difference generation
• Photomixing and photoconductive antennas
• Quantum cascade lasers

 Electronics approach:
• Frequency multiplying chains
• Resonant tunneling diodes
• Traveling wave tubes (vacuum electronics)

The Terahertz Technology Gap

IEEE 802.15-19-0108—00-
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Our Approach: Hybrid Graphene/ 
Semiconductor Plasmonic Technology

Plasmonic
Nano-antenna

Plasmonic Source Plasmonic 
Modulator

Electric Signal 
Detector

EM Wave

Plasmonic
Nano-antenna

SPP Wave

Modulated 
SPP Wave

Voltage

1,1,1,0,1 Plasmonic Detector 
and Demodulator

Electric Signal 
Generator1,1,1,0,1

Voltage

Modulated 
SPP Wave

Direct generation of 
true THz carrier signals
Direct modulation with 
multi-GHz bandwidth (at least)
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• Proposed and analytically modeled the performance of an on-chip 
THz signal generator and detector based on a III-V semiconductor 
High-Electron-Mobility Transistor (HEMT) enhanced with graphene

THz Plasmonic Source

IEEE 802.15-19-0108—00-
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J. M. Jornet and Ian F. Akyildiz, “Graphene-based Plasmonic Nano-transceiver for Terahertz Band 
Communication,” in Proc. European Conference on Antennas and Propagation, April 2014. 
U.S. Patent No. 9,397,758 issued on July 19, 2016.

• Working principle:
 By setting asymmetric boundary 

conditions at the source and 
drain, a THz plasma wave is 
excited in the channel 
Dyakonov-Shur (DS) Instability

 The plasma wave is used to 
launch a THz Surface Plasmon 
Polariton (SPP) wave on the 
graphene layer  SPP waves 
can propagate on graphene at 
THz frequencies



• Proposed and analytically modeled the performance of an on-chip 
plasmonic modulator able to based on tunable graphene waveguide

THz Plasmonic Phase Modulator
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P. K. Singh, G. Aizin, N. Thawdar, M. Medley, and J. M. Jornet, “Graphene-based Plasmonic Phase 
Modulation for THz-band Communication,” in Proc. European Conference on Antennas and Propagation, 
April 2016. U.S. Patent Application filed on April 9, 2018 (Priority date April 9, 2017). 

• Working principle:
 By electronically modulating the 

Fermi energy of the graphene 
layer, we can accelerate or slow 
down the speed of a 
propagation SPP wave

 The phase of an outgoing SPP 
wave at periodic observation 
times (e.g., symbols) depends 
only on the waveguide length 
and the speed  Modulating 
the speed == modulating phase



• Proposed and analytically modeled the performance of a graphene-
based plasmonic nano-antenna able to efficiently radiate at THz-
band frequencies

THz Plasmonic Antenna
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J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-antennas for Terahertz Band 
Communication in Nanonetworks,” IEEE JSAC, vol. 31, no. 12, pp. 685-694, December 2013.
Shorter version in Proc. of EuCAP, Apr. 2010. U.S. Patent No. 9,643,841, issued on May 9, 2017.

• Working principle:
 SPP waves are nothing but

surface EM waves  Their 
propagation properties depend 
both on the Fermi energy and 
on the geometry of the surface 
in which they propagate

 By engineering the length, width 
and thickness of the plasmonic 
waveguide, we can design a 
plasmonic resonant cavity with 
lossy ends = a patch antenna



• Objective: To establish the theoretical and experimental foundations of ultra-
broadband communication networks in the THz band (0.1–10 THz)

Our Research: Terahertz-band 
Communication Networks

THz 
Materials & Devices

THz 
Channel

THz
Networks

THz 
Communications

• Error and Flow 
Control

• Medium Access 
Control

• Relaying
• Routing

• THz 
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The TeraNova Testbed

22

• The World’s first Integrated testbed for ultra-broadband 
communication networks at true terahertz frequencies 

 Hardware overview
 Software-defined physical layer
 Experimental characterization and result

AA

J. M. Jornet, P. Sen, D. Pados, S. Batalama, E. Einarsson and J. P. Bird, “The TeraNova Platform: 
An Integrated Testbed for Ultra-broadband Wireless Communications at True Terahertz-band 
Frequencies,” submitted for journal publication, 2018.
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The TeraNova Testbed: Hardware Overview

23AA
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• Local Oscillator (Transmitter and Receiver side)
 Generate very stable sinusoids between 250 KHz to 50 GHz
 Maximum output power 10 dBm
 Keysight PSG E8257

• Frequency Multipliers, Mixer and Amplifiers (MixAMC, for Up and Down 
converter)
 Based on Schottky-diode technology and custom-designed by Virginia 

Diode Inc. (VDI)
 Starting point: 41.67-43.75 GHz
 Multipliers chain: x2 x2 x2 x3 = x24
 Mixer: 40 GHz bandwidth

• Some specifications:
 Center frequency: tunable between 1000-1050 GHz
 Bandwidth: up to 40 GHz
 Transmit power: approximately 30 μW for Up-converter

TeraNova Hardware: Key Components

24AA
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Response of the Up-converter 
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• Baseband Signal Generator
 Based on a Keysight Arbitrary Waveform Generator (AWG) 

M8196A
 Creates analog signal from the digitally described signal

• Takes Matlab-style file as input

• Specifications:
 Sampling Frequency: 93.4 GigaSamples-per-second 

(GSas)
 Bandwidth: 32 GHz
 Output power: 10 dB single ended; 13 dBm differential 
 RMS jitter: 100 fs

TeraNova Hardware: Key Components

26AA
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• Baseband Signal Recovery
 Based on a Keysight Digital Storage Oscilloscope 

(DSOZ632A)
 One of the fastest DSO in the market
 Creates digital signal from the received IF analog signal

• Returns Matlab-style file as output

• Specifications:
 Sampling Frequency: 80 or 160 GSas
 Bandwidth: 32 or 63 GHz
 Resolution: 8-bit 
 RMS jitter: 170 fs

TeraNova Hardware: Key Components

27AA
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• Antenna
 Directional horn Antenna (VDI)
 26 dBi gain
 10଴ angle for 3 dB beamdwidth

• Cables and connectors
 2.4 mm male to male coaxial cable
 Low insertion loss connector: VSWR rating 

approximately 1.2:1

TeraNova Hardware: Key Components

28AA
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The TeraNova Testbed: 
Software-defined Physical Layer

29AA

• Software-defined backbone for transceiver system
• Implemented on AWG and DSO

IEEE 802.15-19-0108—00-
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• Generation of Frame
 Header: 18 bits well-known maximal merit factor (MF) 

sequence
 Training sequence: up to 200 bits
 Data: 2184 bits

• Modulation
 Single Carrier: BPSK, QPSK, 8-PSK, BPAM, 4-PAM

• Bandwidth (BW): 5-30 GHz
 Multicarrier: OFDM (BPSK, 10 subcarrier with 10 GHz BW)

• serial to parallel conversion block-IFFT block- add cyclic prefix-
parallel to serial conversion block to transmit 

 Higher order modulation not used due to power limitation.

Software-defined Physical layer: 
Key Blocks for Transmitter

30AA
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• Pulse Shaping
 Needed to limit the transmission bandwidth
 Raised cosine pulse filter is utilized
 Generated signal given by, • 𝑥௠ 𝑡 = 𝑟𝑒𝑎𝑙[𝑝(𝑡)(𝐼௠ + 𝑗𝑄௠)]𝑒௝ଶగ௙಺ಷ௧• 𝑝 is the raised cosine pulse and 𝑓ூி refers to the intermediate frequency

• Pre-equalization
 Utilized to compensate hardware constant frequency selective 

response
 Occur mainly due to coaxial cables and connectors
 Inverse of the measured frequency response is utilized as the 

frequency domain coefficient of the pre-equalization filter.

• Pre-equalized signal used as Digitized feed to AWG

Software-defined Physical layer: 
Key Blocks for Transmitter

31AA
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• Digitized feed from DSO utilized for further processing
 Sampling rate is 160 Gsas

• Noise Filtering
 Chebyshev bandpass (M-PSK) and lowpass (M-PAM, 

OFDM) filter is Utilized
 Based on Parks-McClellan-algorithm 

• Frame Synchronization 
 Correlator filter is utilized to get the stating point
 Correlates the  received  signal  with  the  same 18-bit-long  

maximal MF sequence

Software-defined Physical layer: 
Key Blocks for Receiver

32AA
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• Post-equalization
Minimum mean square error (MMSE) linear filter 

equalizer is utilized
 To mitigate the effect of ISI, frequency selective 

nature of the channel and path loss
 Filter coefficient vector, 𝑓መ is obtained by minimizing 

the error between the transmitted training symbols,𝑠, 
and the symbols of the output of the equalizer, i.e. R𝑓መ

• R is Toeplitz matrix with the received training symbols

 So, objective: 𝑚𝑖𝑛 𝑠 − 𝑅𝑓መ ଶ w. r. t 𝑓መ
 Solution: 𝑓መ = (𝑅்𝑅)ିଵ𝑅்𝑠

Software-defined Physical layer: Key 
Blocks for Receiver

33AA
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• Demodulation
 To detect the bits from received signal
 Correlator type detector based on maximum likelihood 

criterion is utilized• 𝑚ෝ =  arg 𝑚𝑎𝑥ଵஸ௠ஸெ ׬ 𝑟 𝑡 𝑥௠ 𝑡 𝑑𝑡 −  ଵଶ଴் 𝑥௠ ଶ• 𝑚ෝ denotes the maximum match with a particular symbol and 
m=1,2,. . . . M. M is the modulation index. 𝑟 𝑡 represents the 
received symbol. 𝑥௠ 𝑡 is all possible symbol generated after 
passing through raised cosine pulse filter

 For OFDM
• Removed cyclic prefix- serial to parallel conversion block-FFT 

block- get the complex baseband signal 𝐼௠ + 𝑗𝑄௠  - pass 
through detection algorithm

Software-defined Physical layer: Key 
Blocks for Receiver

34AA
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• Link budget analysis
 Match the theoretical received power and experimentally received 

power by taking into account the loss introduced by every element• 𝑃௥௫ = 𝑃௧௫ + 𝐺௧௫ + 𝐺௥௫ + 𝐺௅ே஺ − 𝐿௦௣௥௘௔ௗ − 𝐿௔௕௦ − 𝐿௠௜௫௘௥ − 𝐿௠௜௦௖• 𝑃௧௫ is transmitted signal power; 𝐺௧௫, 𝐺௥௫ are the transmit and receive 
antenna gains, respectively; 𝐺௅ே஺ is the LNA gain at the receiver; 𝐿௦௣௥௘௔ௗ
is spreading loss; 𝐿௔௕௦ is absorption loss; 𝐿௠௜௫௘௥ is conversion loss at 
receiver and 𝐿௠௜௦௖ is miscellaneous losses in cables and connectors

Experimental System Characterization 
and Result

35AA



• Channel frequency characterization
 THz channel is characterized in vicinity of the first absorption-defined 

window above 1 THz. 
 The channel frequency characterization is done by generating a 

constant single tone IF of 500 MHz by AWG and sweeping the LO 
frequency at the transmitter and the receiver in fixed steps of 5 GHz, 
from 1 THz to 1.05 THz.

 Simultaneous change the two LOs help to separate the impact of the 
up & down converters and mixers from the actual channel response.

Experimental System Characterization 
and Result
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• Noise amplitude characterization
 Main source: thermal noise in the receiving chain, the absorption noise 

introduced by water vapor molecules, low frequency noise due to the power 
supply and the transmission chain.

 It is an essential step to determine detection algorithm and further processing 
of the signal for detection of the bits

 Noise follows a Gaussian distribution: 
• Mean  -1.7 mv, variance 2.4 μw for the system with the down-converter added
• Mean -0.95 mv, variance 1.2 μw for the system without  the down-converter added

Experimental System Characterization 
and Result
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• Noise phase characterization
 Rapid, short-term, random fluctuations in phase due to time-

domain instability
 Measured by comparing the carrier power with the power of phase 

leakage for 1 Hz bandwidth at the different phase offset from the 
carrier frequency.

 Very low single side band (SSB) phase noise at RF, -100 dBc/Hz 
at 1 MHz

Experimental System Characterization 
and Result
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• Data communication
 10 frames of 2184 data bits consider for bit error rate (BER)

Experimental System Characterization 
and Result

39AA

BPSK
BW (GHz)/ 
Rate (Gbps)

Distance 
(cm)

SNR 
(dB)

BER

10/5 6 10 0

10/5 12 6 9.1 x 10-5

20/10 6 4 1.8 x 10-4

30/15 6 1.8 2.5 x 10-2

QPSK
BW (GHz)/ 
Rate (Gbps)

Distance 
(cm)

SNR 
(dB)

BER

10/10 6 10 0

10/10 12 6 9.1 x 10-4

20/20 6 4 1.2 x 10-3

30/30 6 1.8 8.7 x 10-2

8-PSK
BW (GHz)/ 
Rate (Gbps)

Distance 
(cm)

SNR 
(dB)

BER

10/15 6 10 9.1 x 10-5

10/15 12 6 2.7 x 10-2
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• Data communication
 10 frames of 2184 data bits consider for bit error rate (BER)

Experimental System Characterization 
and Result

40AA

BPAM
BW (GHz)/ 
Rate (Gbps)

Distance 
(cm)

SNR 
(dB)

BER

5/5 6 15.5 0

5/5 12 13 5.2 x 10-3

4-PAM
BW (GHz)/ 
Rate (Gbps)

Distance 
(cm)

SNR 
(dB)

BER

5/10 6 12.3 3.7 x 10-2

OFDM
BW (GHz)/ 
Rate (Gbps)

Distance 
(cm)

SNR 
(dB)

BER

10/9 6 16 7.3 x 10-4

10/9 12 8 5.6 x 10-2
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Constellation diagram
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• Constellation diagram of 
BPSK, QPSK and 8-PSK 
modulation at 13 cm distance 
with 10 GHz bandwidth 

• After and before equalization
• Before equalization, the 

constellations are wide 
scattered 

• Equalization corrects the 
phase of the modulation



• Link budget analysis and channel characterization experimental results 
closely match with the theoretically computed values. 

• The results reinforce the system design and demonstrate the ultra-
broadband response of the channel.

• Noise amplitude follows the Gaussian distribution and allows us to utilize 
ML type detectors.

• Low phase noise eases the design and implementation of single and 
multi-carrier modulations.

• BER results encourage the use of phase modulations with the current 
technology available.

• Wireless communications in the THz band (and beyond) will be a major 
part of 5G+/6G systems.

Conclusion
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