Submission Title: A first 300 GHz Phased Array Antenna
Date Submitted: 11. July 2017
Source: Sebastian Rey, Technische Universität Braunschweig (TU Braunschweig)
Address: Schleinitzstr. 22, 38106 Braunschweig, Germany
Voice: +49 531 391 2439, FAX: +49 531 391 5192, E-Mail: rey@ifn.ing.tu-bs.de

Re: -

Abstract: A concept of a phased array operating at 300 GHz with horn elements and some simulation and measurement results are presented.

Purpose: Provide Information to the Interest Group

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
A first Phased Array Antenna with horn elements operating at 300 GHz
Outline

- TERAPAN Framework
- Phased Array Antenna at 300 GHz
- Performance in Simulations
- Measurement Results
- Summary
TERAPAN – SISO-Link

- Collaboration project (University of Stuttgart, Fraunhofer IAF, TU BS)
- 35nm GaAs mHEMT
- Fully integrated 300 GHz transmitter & receiver MMICs
- Compact high performance waveguide modules
- Link budget
 - -4.0 dBm transmit power
 - +24.2 dBi horn antenna gain (Tx)
 - -88.0 dB free space path loss 2 m
 - +24.2 dBi horn antenna gain (Rx)
 - -(-59.2 dB) receiver noise (noise figure 6.7 dB, 64 GHz bandwidth)

 = 15.6 dB SNR

- Successfully demonstrated 64 Gbit/s data transmission with QPSK (limited by measurement equipment and linearity)
Constraints and Targets for the Design

- Max. **4 channels**
 - Max. number of available AWG channels
 - Enough for beam steering demonstration
- Standard **WR-3 wave guide flange** for each element
 - Easier characterization of components
 - Practical reasons (easy exchange in case of defect, etc)
 - Flexibility
- Operational frequency range 275 to 325 GHz
- At least a **gain of 20 dBi** (whole array), 14 dBi single element
 - SISO-link used 24.2 dBi horn antenna
 - Transmitter: 20 dBi (array gain) + 6 dB (4 channels with the same power)
- Linear array in one dimension
 - Narrower main lobe
 - Better steering capabilities than 2x2
- Manufacturability
Proposed Antenna

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3.0 mm (horn width)</td>
</tr>
<tr>
<td>C</td>
<td>1.0 mm (horn height)</td>
</tr>
<tr>
<td>D</td>
<td>0.8640 mm (WR3)</td>
</tr>
<tr>
<td>E</td>
<td>0.4320 mm (WR3)</td>
</tr>
<tr>
<td>F (flare)</td>
<td>3.577 mm</td>
</tr>
<tr>
<td>spacing</td>
<td>1.25 mm = C + 0.25 mm</td>
</tr>
</tbody>
</table>
Simulation Results – Single Element

- 300 GHz Pattern
- Single (inner) horn
 - 14.8 dBi gain
 - 50.0° horizontal HPBW (along width)
 - 23.6° vertical HPBW (along height)

- Outer elements
 - -0.2 dB less gain; Horizontal HPBW approx. 2° wider

- Average S11 of -25.7 dB; max. -22.7 dB
Simulated Impedance Matching

- Average S_{11} of -25.7 dB; max. -22.7 dB
Simulation Results – Array

- 300 GHz Pattern
- Array
 - 20.7 dBi gain
 - 10.3° horizontal HPBW (along width)
 - 23.6° vertical HPBW (along height)
 - Grating lobes

All values for 300 GHz with Time Domain Solver of CST Microwave Studio
 - For 275 GHz 19.9 dBi, 11.3°, 24.9°
 - For 325 GHz: 21.4 dBi, 9.5°, 22.3°
Simulation Results – Grating Lobes

- 300 GHz Pattern
- Array
 - Grating lobes
 - Spacing bigger than half of the wavelength

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3.0 mm (horn width)</td>
</tr>
<tr>
<td>C</td>
<td>1.0 mm (horn height)</td>
</tr>
<tr>
<td>spacing</td>
<td>1.25 mm = C + 0.25 mm</td>
</tr>
</tbody>
</table>
Outline

• TERAPAN Framework
• Phased Array Antenna at 300 GHz
• Performance in Simulations
• Measurement Results
• Summary
Antenna Scanner Setup

- Inhouse made antenna scanner in a semi-anechoic chamber at PTB in Braunschweig
- Vector network analyzer Rohde & Schwarz ZVA 50 with frequency extensions ZV-Z325
- S12 is recorded and analyzed
- Known reference horn on port 1, single element of the phased array at port 2
- Measurement bandwidth 10 Hz, 220 – 325 GHz in 5 GHz steps, angular range +/- 90 degree

Measurements of the array as a whole:
- No 5 port VNA at 300 GHz available
- with TERAPAN 4 Channel Rx/Tx-Modules
Antenna Patterns – Outer Elements

- Measurements match the simulation very well
 - Less than 0.6 dB mean error for horizontal patterns, standard deviation <1.35 dB
 - Less than 1.2 dB mean error for vertical patterns, standard deviation < 3.3dB
- Restricted to -45…45 deg. (horizontal)/45…135 deg. (vertical)
 - Mean error below 0.75 dB/1.6 dB with a standard deviation <0.4 dB/1.3 dB
Antenna Patterns – Inner Elements

- Measurements match the simulation very well
 - Less than 0.3 dB mean error for horizontal patterns, standard deviation < 0.82 dB
 - Less than 1.1 dB mean error for vertical patterns, standard deviation < 3.5 dB
- Restricted to -45...45 deg. (horizontal)/45...135 deg. (vertical)
 - Mean error below 0.4 dB/1.6 dB with a standard deviation < 0.3 dB/1.2 dB
Antenna Patterns – Frequency

- Measurements match the simulation very well
 - Increasing directivity with frequency
 - (Increasing gain with frequency)
Antenna Matching

- **Setup**
 - Single Element is aligned to the direct path (0°).
 - VNA Sweep in 5 GHz steps

- S11 is below -20 dB for each antenna element: excellent matching
Demonstration of Beam Steering at NGMN IC&E 2016

Demo at NGMN IC&E 2016

- 60 cm distance
- single transmitter
- 4 channel receiver with phased array antenna
- electronic beam steering shown and verified by mechanical rotation
- QPSK modulation
- data rate of 12 Gbit/s (to see data transmission even within a side lobe)
- Local oscillator generated by DDS modules
Summary

• Requirements for 300 GHz antennas have been briefly reviewed
• A phased array with horn elements has been introduced
• Simulation and measurement results have been shown

• References:
Vielen Dank für Ihre Aufmerksamkeit.

Thank you for paying attention!