Submission Title: [Field trial of MHN system for high-speed train communications]
Date Submitted: [10 May, 2017]
Source: [Junhyeong Kim, Hee-Sang Chung, Bing Hui, Gosan Noh and Il Gyu Kim] Company [ETRI]
Address [218 Gajeong-ro, Yuseong-gu, Daejeon, 34129, KOREA]
Voice:[+82-42-860-6239], FAX: [+82-42-861-1966], E-Mail:[jhkim41jf@etri.re.kr]
Abstract: [This document presents field trials of MHN and MHN-E systems]
Purpose: [For discussion]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Contents

• Overview of MHN System

• Field trial of MHN system

• References
Contents

• Overview of MHN System

• Field trial of MHN system

• References
Overview of MHN System

• Basic System Architecture of MHN
 – MHN system for high-speed train (HST) communications
 – Hierarchical two-hop network
 • Mobile wireless backhaul (MWB) link outside using *millimeter-wave*
 • Onboard access link
 – MHN*/MHN-E** system architecture[1]
 • Single Frequency Multi-Flow (SFMF)
 – Double
 – Improve

* MHN : mobile hotspot network
**MHN-E : MHN Enhancement
Overview of MHN System

• Key Features of MHN-E System for HST Communications
 – High-mobility support up to 500km/h
 – A frame structure enabling effective neighbor cell search and high-performance handover
 – Carrier aggregation to attain a total transmission bandwidth of up to 1GHz
 – High-order modulation schemes (64-QAM and 256-QAM)
 – SFMF and MIMO using polarization antennas
 – Uplink-downlink duplexing : TDD
 – OFDM for both uplink and downlink transmissions

• MHN system VS MHN-E system

<table>
<thead>
<tr>
<th>Design Parameters</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHN-E</td>
</tr>
<tr>
<td>Frequency</td>
<td>25.5 GHz*</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 GHz*</td>
</tr>
<tr>
<td>EIRP</td>
<td>36 dBm**</td>
</tr>
<tr>
<td>Mobility support</td>
<td>Up to 500 km/h</td>
</tr>
<tr>
<td>Modulation order</td>
<td>QPSK, 16QAM, 64QAM, 256QAM</td>
</tr>
<tr>
<td>Antenna configurations</td>
<td>2x2 SFMF, 2x2 MIMO</td>
</tr>
<tr>
<td>Maximum throughput</td>
<td>10Gbps</td>
</tr>
</tbody>
</table>
Overview of MHN System

- Frame structure and numerology of MHN-E system

<Numerology of MHN-E system>

<table>
<thead>
<tr>
<th>Subcarrier spacing</th>
<th>180 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling clock rate (MHz)</td>
<td>184.32</td>
</tr>
<tr>
<td>OFDM symbol duration, no CP (us)</td>
<td>5.56</td>
</tr>
<tr>
<td>CP duration (us)</td>
<td>0.69</td>
</tr>
<tr>
<td>CP overhead (%)</td>
<td>12.4</td>
</tr>
<tr>
<td>Number of symbols per TTI</td>
<td>40</td>
</tr>
<tr>
<td>TTI duration (ms)</td>
<td>0.25</td>
</tr>
<tr>
<td>Frame duration (ms)</td>
<td>10</td>
</tr>
<tr>
<td>Number of RBs</td>
<td>50</td>
</tr>
<tr>
<td>in frequency domain</td>
<td></td>
</tr>
<tr>
<td>Number of subcarriers per RB</td>
<td>12</td>
</tr>
<tr>
<td>FFT size</td>
<td>1024</td>
</tr>
</tbody>
</table>

<Carrier aggregation of MHN-E system (8×125MHz)>

- Radio frame, $T_{frame} = 10$ ms
- Subframe, $T_{subframe} = 2$ ms
- One Slot, $T_{slot} = 250$ μs

<TDD frame structure of MHN-E system>

- Downlink slot
- Special slot
- Uplink slot

<Carrier aggregation of MHN-E system (8×125MHz)>

- CC 0 (PCell)
- CC 1 (SCell)
- CC 2 (TCell)
- CC 3 (TCell)
- ...
Overview of MHN System

- Frame structure and numerology of MHN-E system
 - Resource grid
 - 1 RB = 12×40 resource elements, $\Delta f = 180kHz$, $N_{symb}^{DL} = 40$, $N_{RB}^{DL} = 12$, $N_{RB}^{SC} = 50$
Overview of MHN System

• Frame structure and numerology of MHN-E system
 – A frame structure enabling CA, efficient neighbor cell search and high-performance handover\[1\]
• Different resource allocation
 – Primary cell (PCell)
 – Secondary Cell (SCell)
 – Tertiary cell (TCell)

<Received SNR at mVE#1>

\[125\text{MHz} \times 8 = 1\text{GHz}\]
Overview of MHN System

- Frame structure and numerology of MHN-E system
 - A frame structure enabling CA, efficient neighbor cell search and high-performance handover\(^1\)
- Resource nulling: SCell vacates the resources in order to detect target cell signal without interference from serving cell

\(^{1}\text{[1]}\)
Contents

• Overview of MHN System

• Field trial of MHN system

• References
Field trial of MHN system

• Field trial of MHN system (completed)
 – Phase 1: field trial on the highway
 – Phase 2: field trial at Seoul subway tunnel
 – Phase 3: field trial at Seoul subway tunnel (upgraded testbeds)

• Field trial/demonstration of MHN-E system
 – Phase 1: preliminary test in the lab (completed)
 – Phase 2: field trial using a vehicle with low mobility (being prepared)
 – Phase 3: field trial on the Gangneung street with a vehicle running at a speed of up to 60km/h (being prepared)
 – Phase 4: field trial with subway train (TBD)
Field trial of MHN system

• Phase 1: field trial on the highway
 – MHN testbeds installed in two moving vehicles
 • The speed of mTE vehicle was up to 80km/h
 • Demonstration of point-to-point communications showing a peak data rate of 500Mbps
Field trial of MHN system

• Phase 2: field trial at Seoul subway tunnel\cite{2}\cite{3}
 – MHN Test Bed Installation along Seoul Subway Line 8
 • Installation of mRU testbed and mTE testbed
 – Demonstration of the MHN system in the moving subway (Jan. 2016)

Data rate exceeding 400Mbps
Field trial of MHN system

- Phase 3: field trial at Seoul subway tunnel (upgraded testbeds)
 - Reinstallation of the upgraded MHN system prototype
 - A field trial along 2.4 km long railway line through three stations of Seoul Subway Line 8 (Feb. 2017)
Field trial of MHN system

- Phase 3: field trial at Seoul subway tunnel (upgraded testbeds)
 - Peak data rate of downlink was 1.2Gbps
 - Much higher than that of previous field trial\(^2\)\(^3\)
 - Peak data rate of uplink was 110 Mbps
 - Ratio of downlink to uplink time duration = 7:1
 - Handover test
 - 4 handover points: mRU 1 ~ 4
Field trial/demo of MHN-E system

• Phase 1: preliminary test in the lab (Feb. 2017)
 – Feasibility validation of SFMF transmission technique
 – Data rate of 2.5Gbps was achieved
Field trial/demo of MHN-E system

- Phase 2: field trial using a vehicle with low mobility (being prepared)
 - Demonstration of a peak data rate exceeding 2.5Gbps
 - VR/AR service demonstration
 - Handover demonstration

May 2017
Junhyeong Kim, ETRI
Field trial/demo of MHN-E system

• Phase 3: field trial on the Gangneung street with a vehicle running at a speed of up to 60km/h, which is scheduled for Feb. 2018

• Phase 4: field trial of MHN-E system with subway train (TBD)

mmWave moving wireless backhaul
(data rate exceeding 2.5 Gbps)

Broadband Internet service via Giga Wi-Fi AP deployed in the vehicle

Immersive experience (VR/AR)

Multiple UHD video streaming
References

Thank you