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1. Security
 For security, this standard uses Advanced Encryption Standard (AES) in Galois counter mode (GCM) with Galois Message Authentication Code (GMAC) henceforth named Galois counter mode protocol (GCMP), Elliptic Curve Cryptology (ECC) and Elliptic Curve Digital Signature Algorithm (ECDSA).
1.1 Galois counter mode protocol
GCMP provides data confidentiality and data origin authentication and integrity to the MAC payload field MAC FRAME  MAC frame  of MAC frames.
The AES algorithm is defined in FIPS PUB 197.  All AES processing used in GCMP uses AES with a 128-bit key (GCMP-128) or a 256-bit key (GCMP-256).

GCM is a generic mode that can be used with any block-oriented encryption algorithm. GCM requires a new temporal key (TK) for every unicast, multicast, and selected broadcast session. GCM also requires a unique nonce value for each frame protected by a given temporal key, and GCMP uses a 96-bit nonce that includes a 48-bit packet number (PN) for this purpose. Reuse of a PN with the same temporal key voids all security guarantees. GCMP uses a 128-bit message integrity code (MIC).

1.1.1 Encrypted MAC frame format

GCMP processing expands the original MAC frame size by 23 octets: 7 octets for the GCMP Header field and 16 octets for the MIC field.  
The GCMP Header field is constructed from the PN subfield. The 48-bit PN is represented as an array of 6 octets. PN5 is the most significant octet of the PN, and PN0 is the least significant octet.  
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Figure 120—Expanded GCMP MAC frame

	
	
	

	
	
	




1.1.2 GCMP cryptographic encapsulation

The GCMP cryptographic encapsulation process is depicted in Figure 121.
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Figure 121—GCMP encapsulation block diagram

GCMP encrypts the MAC Payload of a plaintext MAC frame and encapsulates the resulting cipher text using the following steps:

a) Increment the PN, to obtain a fresh PN for each MAC frame, so that the PN never repeats for the same temporal key. Retransmitted MAC frames shall be not modified on retransmission: MAC Header and MAC Payload are not modified; otherwise GMAC will fail.
b) Use the fields in the MACHeader to construct the additional authentication data (AAD) for GCM. The GCM algorithm provides integrity protection for the fields included in the AAD. Additionally, during the Extended Diffie-Hellman key agreement protocol, the AAD shall include Additional Data (AD) as described in X.  
c) Construct the GCM nonce from the PN and the Source MAC Addressfrom the MACHeader.

d) Place the new PN  into the GCMP Header.
e) Use the temporal key (TK), AAD, nonce, and MAC Payload to form the cipher text and Message Integrity Code (MIC). 

f) Form the encrypted MAC frame by combining the original MAC Header, GCMP Header, encrypted MAC Payload, MIC, and append a FCS.

1.1.2.1 PN processing



 
The PN is incremented by a positive number for each MAC frame. The PN shall be incremented in steps of 1 for constituent MAC frames. The PN shall never repeat for a series of encrypted MAC frames using the same temporal key.
If the PN is larger than macPNExhaustionThreshold (Table 97), an MLME-PNEXHAUSTION.indication primitive shall be generated.

1.1.2.2 GCM AAD

The format of the AAD is shown Figure 122.
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Figure 122—AAD format
The AAD is constructed from the MACHeader. Retransmitted MAC frames shall be not modified on retransmission: MAC Header is not modified. The MAC Header shall be present in the AAD always.
During the Extended Diffie-Hellman key agreement protocol, the AAD shall include the Additional Data (AD) field as described in X.


a) 
1) 
2) 
3) 
4) 
5) 
b) 
c) 
d)  
1.1.2.3 GCM nonce

The format of the GCM nonce is shown in Figure 123.
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Figure 123—GCM nonce format
The octets of the PN shall be ordered so that PN0 is at octet index 6 and PN5 is at octet index 11.
1.1.2.4 GMCP Header

The GCMP Header is formed by the PN as illustrated in Figure 120.
1.1.3 GCM encryption processing

GCM is a generic authenticate-and-encrypt block cipher mode, and in this standard, GCM is used with the AES block cipher.

There are four inputs to the GCM encryption processing:

a) Key: the temporal key (16 octets or 32 octets) as described in X.
b) Nonce: the nonce (12 octets) as described in 15.1.2.3.

c) Data: the plaintext MAC Payload from a MAC frame.
d) AAD: the additional authentication data  formed from the MAC Header and Additional Data (AD) during the Extended Diffie-Hellman key agreement protocol as described in X.
The GCM encryption processing provides authentication and integrity of the MAC Payload and AAD, as well as data confidentiality of the MAC Payload. The output from the GCM encryption processing consists of the encrypted data and encrypted MIC (16 octets). 
The PN values sequentially number each MAC frame, where the PN is incremented by 1 for each MAC frame. Each transmitter shall maintain a single PN (48-bit counter) for each unicast, multicast and selected broadcast session. The PN shall be implemented as a 48-bit strictly increasing integer, initialized to 1 when the corresponding temporal key is initialized or refreshed.

1.1.4 GCMP cryptographic decapsulation
The GCMP cryptographic decapsulation process is depicted in Figure 124.
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Figure 124—GCMP decapsulation block diagram
GCMP decrypts the encrypted MAC Payload of a cipher text MAC frame and decapsulates a plaintext MAC frame using the following steps:

a) The   cipher text MAC frame is parsed to construct the AAD and nonce. 

b) The AAD is formed from the MAC Header of the encrypted MAC frame, and Additional Data (AD) during the Extended Diffie-Hellman key agreement protocol as described in X
c) The nonce is formed from the  Source MAC Address field of the MAC Header and PN field of the GMCP Header. 

d) The MIC is extracted for use in the GCM integrity checking.
e) The GCM decryption processing uses the temporal key, AAD, nonce, MIC, and  encrypted MAC Payload to recover the plaintext MAC  Payload, as well as to check the integrity of the AAD and plaintext MACPayload.

f) The received MAC Header and the plaintext  MAC Payload from the GCM decryption processing are concatenated to form a plaintext MAC frame.

g) The decryption processing prevents replay of MAC frames by validating that the PN in the GCMP Header is greater than the replay counter (PN*) maintained for the unicast or multicast session.

1.1.5 GCM decryption processing

GCM decryption processing shall use the same parameters as GCM encryption processing. There are five inputs to GCM recipient processing:

a) TK: the temporal key (16 octets or 32 octets).
b) Nonce: the nonce (12 octets) as described in 15.1.2.3.

c) Encrypted Data: the encrypted MAC Payload and the MIC parsed from the encrypted MAC frame
d) 
e) AAD: the AAD formed from the MAC Header, and Additional Data (AD) during the Extended Diffie-Hellman key agreement protocol as described in X.
The GCM decryption processing checks the authentication and integrity of both: the encrypted MAC Payload and AAD; as well as decrypting the encrypted MAC Payload. The plaintext MAC Payload is returned only if the MIC check is successful (the parsed MIC matches the MIC value obtained from decrypting the received encrypted MAC frame (MIC*)). 

If successful, the GCM decryption processing concatenates the original MAC Header with the plaintext MAC Payload to form the plaintext MAC frame.

1.1.5.1 PN and replay detection
The following processing rules are used to detect replay:

a) The receiver extracts the PN from the GCMP header.

b) The receiver shall maintain a separate set of replay counters for each unicast, multicast and selected broadcast sessions in a PD. The receiver initializes these replay counters to 0 when a temporal key is reset. The replay counter is set to the PN value of accepted GCMP MAC frames.

c) A replayed frame occurs when the PN extracted from a received MAC frame is less than or equal to the current replay counter (PN*) value  and the receiver shall discard such frame.

1.2 Key management

The key agreement is performed via Elliptic-Curve Diffie-Hellman (ECDH) algorithm with digital signatures via the Elliptic-Curve Digital Signature Algorithm (ECDSA). 

1.2.1 Elliptic Curve Domain Parameters

An elliptic curve over a finite field Fp is defined as 
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where 
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 and 0 is the point at infinity (identity element required to define an Abelian group). Arithmetic operations in an EC over Fp are referred as EC arithmetic, whose definitions are out of the scope of this standard.  

The domain parameters of an EC over Fp is defined as 
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This defines public-key cryptographic schemes based on ECC.

1) The odd prime number p that specifies the size of the finite field. 

2) The coefficients a,b of the EC equation.

3) The base point G=(xG , yG) that generates the subgroup (over Mod operation).

4) The prime order n of the subgroup (number of points in the subgroup).

5) The cofactor h=N/n of the subgroup required to compute n. N is the No. of points in the EC.

For interoperability, this standard shall use the elliptic curves P-256 and P-384 defined in FIPS 186-4 for ECDSA and Curve 25519 defined in Annex E for ECDH key exchange protocol.

1.2.2 Elliptic curve key pair generation
Elliptic curve key pairs should be generated as follows:

Input: Valid elliptic curve domain parameters T (p, a, b, G, n, h).

Output: An elliptic curve key pair (d, Q) associated with T.

Actions: Generate an elliptic curve key pair as follows:

      1) The private key is a random integer d in the interval [1, n − 1].

      2) The public key is the point Q = d G.

      3) Output (d, Q).

1.2.3 Hash functions
This clause specifies the cryptographic hash functions supported in this Standard. Hash functions are used by the ECDSA. 

The supported hash functions are SHA-256 and SHA-384 specified in FIPS 186-4. They map octet strings to hash values (message digest), which are octet strings of a fixed length. The security level associated with a hash function depends on its application.  

Hash algorithm basic properties
	Algorithm
	Message size (bits)
	Message digest size (bits)

	SHA-256
	<  264
	256

	SHA-384
	< 2128
	384


Hash values shall be calculated as follows:
1.2.3.1 Hash256
Input: The input to the hash function is an octet string M.

Output: The hash value H or “error message”.  

Actions:

1) If message size |M| ≥ 264, then output: “error message”.

2) If message size |M| < 264, then output: hash value H according to FIPS 186-4.

1.2.3.2 Hash384
Input: The input to the hash function is an octet string M.

Output: The hash value H or “error message”.  

Actions:

3) If message size |M| ≥ 2128, then output: “error message”.

4) If message size |M| < 2128, then output: hash value H according to FIPS 186-4.

1.2.4 ECDH procedure

An EC primitive indicates a relatively simple operation that is defined to facilitate implementation in hardware or in software for the ECDH key-establishment scheme. Note that, in practice, the key-agreement scheme is just one component of a larger (key-agreement) protocol, which may include many additional actions. Other components of the protocol may provide security services that are not provided by the key-agreement scheme itself. For instance, authentication and integrity of exchanged ephemeral public keys must be provided by other components of a protocol (ECSDA).

PD U shall employ the following process to calculate a shared secret value, Z, with PD V.

1.2.4.1 ECDH shared secret procedure

Input:

1) Supported elliptic curve domain parameters T = (p, a, b, G, n, h)
2) PD U’s private key dU
3) PD V’s public key QV
Output: A shared secret EC element Z, or error indication.

Actions: 
1) Compute the elliptic curve point
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2) If P=0 destroy 
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 and output: “error message”.

3) If P≠0 convert xP to Z using the EC element-to-octet string, destroy P and output: Z. 
1.2.4.2 Key derivation function
Input: 

1) Shared secret Z

2) KeyDataLength in bits (either 128 or 256).

3) Hash function (either Hash256 or Hash384).

4) OtherInformation= keyInfo|| PD U MAC address|| PD V MAC/Multicast address
Output: The temporal/session key K (octet string of length KeyDataLength/8), or error message.

Actions:

1)  If Hash = Hash256 then hashLength=256, maxHashInput=264 and set H=Hash256().

2) If Hash = Hash384 then hashLength=384, maxHashInput=2128 and set H=Hash384().

3) Compute a random integer c in [1,20] and set counter as a an integer with value 1. 

4) If ( Z || counter || OtherInformation) > maxHashInput, then output: “error message”

5) Set 
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6) For i=1 to rep do 

    Compute Hash(i)=H(Z || counter || OtherInformation).

    counter=counter+1.

end

7) MasterKey=Hash(1) || Hash (2) || … || Hash(rep).

8) TK||KeyData=Parse(MasterKey,0,keylength)
1.2.4.2.1 Other information
OtherInformation=keyInfo|| PD U MAC address|| PD V MAC/Multicast address

1.2.4.2.2 Finite field element-to-Byte string conversion
Input: An element α in the finite field Fq.

Output: A byte string S of length 
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Actions: 

1) If q is an odd prime, then α must be an integer in the interval [0, q-1].  
2) Let (S1, S2,…, Sn) be the bytes of S from leftmost to rightmost, where

Si = (ai1, ai2, … , ai8), for i =1 to n
Assume: ai =ai1 27+ai2 26+…+ai7 2+ai8, for i =1 to n.
The bytes of S shall satisfy q=a128(n-1)+a228(n-2)+…+an-128+an.
Stop.

3) Alternatively, if q = 2m, then we assume that α is already represented as a bit string of length m, with each bit indicating the coefficient (0 or 1) of a specific element of basis GF(2m) viewed as a vector space over GF(2). Let (s1, s2… sm) be the bits of α from leftmost to rightmost; and let (S1, S2,…, Sn) be the bytes of S from leftmost to rightmost. The rightmost bit sm shall become the rightmost bit of the last byte Sn, and so on until the leftmost bit s1, which shall become the (8n─ m + 1)th bit of the first byte S1. The leftmost (8n ─ m) bits of the first byte S1 shall be zero. Stop.

1.2.4.2.3 Finite element multiplicative inverse computation
Input: 

1) z: the value to be inverted modulo m
2) m: the modulus.

Output:

1) status: either “success” or “error”.

2) z’: the multiplicative inverse of z Mod m, if it exists.
Actions:

1) Verify that m and z are positive integers such that z < m; if not, output ERROR.

2) Set i = m, j = z, y2 = 0 and y1 = 1.
3) Set
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4) Set 
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5) Set 
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6) Set 
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7) If j > 0, then go to step 3.
8) If i ≠ 1, then output ERROR
9) Compute 
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10) Output z’ and status=”success”. 

1.2.4.3 HMAC-based key derivation function

Hashed-based message authentication code (HMAC)-based key derivation function is henceforth denoted as HKDF.  

Input: 

1) Salt: a public or secret octet string used as key during the randomness extraction step*. 

2) Z: shared secret, an octet string established during the Extended Diffie Hellman public key agreement protocol.

3) OtherInfo: optional context information (it can be a zero-length string).

4) L: length of output key material produced by the HKDF ( ≤255*HashLen*8 ).

5) Hash: the Hash function employed (SHA-256 or SHA-384) in the HMAC procedure, which is defined in FIPS 198-1**.

*The length of Salt can be of any length up to the maximum bit length permitted for input to the employed Hash function. The Salt can be a value computed from nonces exchanged as part of the key establishment protocol, a value already shared by the participant PDs, or a value pre-determined by the protocol. If there is no means to select the Salt, such Salt value shall be set to 0.

**The HMAC function has 2 inputs: an Elliptic Curve Cryptographic key and a Message. The HMAC’s output length is HashLen. 

Output: Keying material (OKM) of L bits. 

Actions:

K = K(1) || K(2) || K(3) || … || K(N) 

where N = Ceil(L/HashLen) and the values of K(i) are defined as follows:

 PRK = HMAC( Salt, Z )

K(0) = empty string of zero-length

K(1) = HMAC( PRK, K(0) || OtherInfo || 0x01 )

K(2) = HMAC( PRK, K(1) || OtherInfo || 0x02 )

    ⁞

K(N) = HMAC( PRK, K(N-1) || OtherInfo || N )

OKM = first L bits of K

1.2.5 


1) 
2) 
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6) 
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1.2.5.5 

1.2.5.6 

Extended Diffie-Hellman key agreement procedure
E-DH establishes a shared secret key between two parties who mutually authenticate each other based on public keys. E-DH provides forward secrecy and cryptographic deniability.

Notation
PK: Elliptic-curve public key.
Encode(PK): encodes an elliptic-curve public key PK into a octet sequence as defined in X.
DH(PK1, PK2): represents an octet sequence which is the shared secret output from an Elliptic-curve Diffie-Hellman function with public keys PK1 and PK2 (the corresponding private keys are placed in a secure location per PD). 
Sign(PK, M): represents an octet sequence that is an ECDSA signature on the octet sequence M (and verifiable with public key PK) with PK’s corresponding private key, as defined in X.
HKDF: represents the HMAC-based key derivation function as defined in X.

Keys
The E-DH key agreement procedure uses the elliptic-curve public keys defined in Table X per PD.
Table X
	Name
	Description

	IK
	Identity key

	EK
	Ephemeral key

	SPK
	Signed pre-key

	Signature
	Signature of SPK:
 Sign(IK, Encode(SPK))

	OPK
	One-time pre-keys


All public keys have a corresponding private key, but for the sake to simplify the description, private keys are omitted.
All pairwise keys shall be generated with the same elliptic-curve, chosen from EC 25519, or 256, or 384 as defined in X.
a) Each PD has a long-term identity public key (IK). 
b) Each PD has a signed prekey (SPK), which will change periodically.

c) Each PD has a set of one-time prekeys (OPKBi), which are each used only once per invocation of the E-DH procedure and delete afterwards.
d) Each PD has an ephemeral key pair with public key EK, which are regenerated per invocation of the E-DH procedure.
The identity key (IK) can be generated once. A new signed prekey and prekey signature shall be generated at some time interval (once a day, or once a week) that is implementation specific. The new signed prekey and prekey signature shall replace the previous values (a PD may keep the private key corresponding to the previous signed prekey for some period of time to handle delayed messages, but after an expiration time, such pairwise keys shall be deleted). The use of one-time prekeys is optional and every one-time prekey shall be used only once per E-DH invocation and shall be deleted afterwards.  
These keys shall be sent during the peering procedure and when new keys are required. 

After a successful E-DH procedure, PDs will share a secret key (SK), which can be used for encrypted communication sessions or used to encrypt a symmetric key to be employed as a group key by a PAC group.

Sending the initial message
After successful peering procedure, or when new keys are required, a Requestor PD obtains the public keys defined in Table X from a Responder PD. 
1) Requestor PD verifies the Responder’s PD elliptic curve signature (ECDSA) with the Responder’s PD IK and SPK as Sign(IK, Encode(SPK)). If the verification fails, an error message shall be generate by issuing an MLME-SECURITYFAILURE.indication and MLME-COMM-STATUS.indication primitives with the Status parameter set to FAIL_ECDSA.
2) Requestor PD generates an ephemeral key pair with public key EK.
3) Requestor PD generates the following shared secret outputs from an elliptic-curve Diffie-Hellman function:
DH1=DH(IKRequestor, SPKResponder)

DH2=DH(EKRequestor, IKRespnder)
DH3= DH(EKRequestor, SPKRespnder)
DH4= DH(EKRequestor, OPKRespnder) ; if a OPKRespnder is available.
D=DH1||DH2||DH3 ; if OPKRespnder is not available.
D= DH1||DH2||DH3||DH4 ; if OPKRespnder is available.
4) Requestor PD generates the shared secret key (SK) as follows:
SK=HKDF(Salt, D, OtherInfo, Hash256)

where Salt is a zero-filled octet sequence with length equal to the hash output length and OtherInfo is a pre-determined ASCII string. Hash384 is optional for stronger security.
5) Requestor PD shall delete its ephemeral private key and D, DH1, DH2, DH3, and DH4 if available.
6) Requestor PD generates the Associated Data as follows:

AD=Encode(IKRequestor) || Encode(IKResponder) || OtherInfo
OtherInfo is optional and contains pre-determined identifying information. 
7) Requestor PD constructs a Public Key Request command frame as defined in clause X. The Encrypted Data field, of the Content field, shall be cipher text corresponding to an implementation specific plaintext according to the GCMP described in X, using the AD defined in step 6)  to form the AAD field defined in X and using the SK as temporal key.  
8) Requestor PD sends the Public Key Request command frame to the Responder PD.

Receiving the initial message
Upon reception of the Public Key Request command frame, the Responder PD shall perform:
1) Responder PD retrieves the Requestor’s PD IK and EK. Also, the Requestor PD retrieves its identity private key (private IK), its private signed prekey (private SPK) and its one-time private prekey (private OPK) if available.
2) Responder PD generates the following shared secret outputs from an elliptic-curve Diffie-Hellman function:
DH1=DH(IKRequestor, private SPKResponder)

DH2=DH(EKRequestor, private IKRespnder)

DH3= DH(EKRequestor, private SPKRespnder)

DH4= DH(EKRequestor, private OPKRespnder) ; if a private OPKRespnder is available.

D=DH1||DH2||DH3 ; if private OPKRespnder is not available.

D= DH1||DH2||DH3||DH4 ; if private OPKRespnder is available.

3) Responder PD generates the shared secret key (SK*) as follows:
SK*=HKDF(Salt, D, OtherInfo, Hash256)

where Salt is a zero-filled octet sequence with length equal to the hash output length and OtherInfo is a pre-determined ASCII string. Hash384 is optional for stronger security.

4) Responder PD shall delete D, DH1, DH2, DH3, and DH4 if available
5) Responder PD generates the Associated Data as follows:

AD=Encode(IKRequestor) || Encode(IKResponder) || OtherInfo

OtherInfo is optional and contains pre-determined identifying information.
6) Responder PD decrypts the Encrypted Data field, of the Content field, according to the GCMP described in X, using the AD defined in step 5)  to form the AAD field defined in X and using the SK* as temporal key.  
7) If the initial ciphertext fails to decrypt or the GCMP authentication fails (MIC), an error message shall be generate by issuing an MLME-SECURITYFAILURE.indication and MLME-COMM-STATUS.indication primitives with the Status parameter set to the corresponding error code: FAIL or FAIL_MIC. 
8) If the initial ciphertext decrypts successfully and the MIC check is fine, the E-DH key agreement protocol is complete. Responder PD shall delete its private OPK for forward secrecy. 
Keys authentication
Before or after an E-DH key agreement procedure, PDs should compare their identity public keys IK, through some authenticated channel. For example, PDs may compare public key fingerprints manually, or by scanning a QR code. Methods for doing this are outside the scope of this standard.
Group key
The initiator PD constructs a symmetric key as group key when it starts a PAC group. The group key (GK) shall be sent per PD after the initiator PD and a Responder PD have successfully run the E-DH key agreement procedure. 
1) Compute the elliptic curve point
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2) If P=0 destroy 
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  and output: “error message”.

3) If P≠0 convert xP to Z using the EC element-to-octet string, destroy P and output: Z.

4) The group key GK is obtained as follows: 
GK=HKDF(Salt, Z, OtherInfo, Hash256)


where Salt is a zero-filled octet sequence with length equal to the hash output length and OtherInfo is set to Group ID. Hash384 is optional for stronger security.
5) Initiator PD constructs a Public Key Request command frame with the Key Type field set to GK and Key Data field set to the value of GK obtained in step 4).
6) Initiator PD shall encrypt the Public Key Request command frame with the SK between the Initiator PD and Responder PD as temporal key TK according to the GCMP defined in clause X.
7) Initiator PD sends the encrypted Public Key Request command frame to the Responder PD in the PAC Group corresponding to Group ID. 
8) Responder PD sends an encrypted Public Key Response command frame to confirm the successful reception of GK.
9) Initiator PD repeats the steps 6) and 7) for every PD in the PAC Group.
If a new GK is required, the Initiator PD repeats the procedure from step 1). 
1.3 




1.4 






1) 
2) 
3) 


1) 
2) 
3) 
4) 
1.5 Signature scheme

This clause specifies the signature schemes based on ECC supported in this standard.

The signature scheme is designed to be used by two entities:  a signer-PD U and a verifier-PD V, when U wants to send a message M in an authentic manner and V wants to verify the authenticity of M. In fact, once a message is signed, any PD V having a copy of U’s public key can verify the signature. In particular, the verifier may not be the entity to whom U originally sent the message. Such third party verification is optional and recommended when a PAC network may have access to infrastructure.

The signature scheme is described in terms of a signing operation, a verifying operation, associated setup and key deployment procedures. PDs U and V should use the schemes as follows: when they want to communicate, PDs U and V shall use the setup procedure to establish which signing option to use. Then PD U shall select an EC key pair and PD V should obtain PD U’s public key. PD U will use the key pair to control the signing operation, and PD V will use the public key to control the verifying operation. Then, each time PD U wants to send a message M, PD U should apply the signing operation to M under its key pair to obtain a signature S of message M, in order to form a signed message. Finally, when PD V receives the signed message, PD V should apply the verifying operation to the signed message under PD U’s public key to verify its authenticity. If the verifying operation is “valid”, PD V concludes the signed message is indeed authentic.
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Figure 129— ECC signature process

1.5.1  ECDSA signature procedure

Initialization:

1) PD U shall establish which hash function to use when generating signatures, see clause 15.2.3. Let Hash denote the hash function and hashlen denote the length in octets of the hash values.

2) PD U should establish elliptic curve domain parameters T = (p, a, b, G, n, h) at the desired security level. The elliptic curve domain parameters T should be generated using the primitive specified in clause 15.2.2.  

3) Entity V should obtain in an authentic manner the hash function Hash and elliptic curve domain parameters T established by PD U.

4) PD U should establish an elliptic curve key pair (dU, QU) associated with T to use with the signature scheme. The key pair generation is specified in clause 15.2.2.

5) PD V should obtain, in an authentic manner, the EC public key QU selected by PD U.

6) PD U Shall sign messages using ECDSA using the keys and parameters established previously and the key deployment procedure as follows:

Input:  The message M as an octet string.

Output: The signature S = (r, s) on M consisting of a pair of integers r and s (each in [1, n-1]), or “error message”.
Actions:

1) Compute an ephemeral EC key pair (k, R) where R = (xR, yR), associated with the elliptic curve domain parameters T established during the setup procedure, using the EC key pair generation specified in clause 15.2.2.

2) Set r = xR mod n (n is the EC subgroup order associated to domain parameters T). 

If r = 0 go to 1).

3) Compute the hash function z=Hash(M) as specified in clause 15.2.3.

4) Compute
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, where k-1 is the multiple inverse of k Mod n and dU is the private key of PD U.
5) If s=0 go to 1).

6) Output the pair S = (r, s) as the signature.

1.5.2 ECDSA signature verification procedure

PD V shall verify signed messages from PD U with ECDSA using the keys and parameters established during the setup procedure and the key deployment procedure

Initialization:
1) Assurance of the signatory’s claimed identity, PD U.

2) Assurance of the validity of the public key of PD U, QU.

3) Assurance that the claimed signatory actually possessed the private key that was used to generate the digital signature at the time that the signature was generated.

Methods for the verifier to obtain these assurances are provided in SP800-89 in case the PAC network has access to infrastructure. Otherwise initialization can be skipped.

Input: 

1) The initialization procedure as specified in 15.5.1.

2) The message M as an octet string.

3) PD U’s purported signature S = (r, s) on M.
Output: An indication of whether the purported signature on M is “valid” or “invalid”.  

Actions:

1) If r and s are not integers in the interval [1, n − 1], output “invalid” and stop.
2) Use the hash function established during the initialization procedure to compute the hash value: z=Hash(M).

3) Compute the integer
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4) Compute the integer
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5) Compute the EC point
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6) If 
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then output “valid”. Otherwise output “invalid”.
 Table 66—Key Descriptor parameters
	Name
	Type
	Range
	Description

	Key cipher suite
	Unsigned char
	0: GCMP-128

1: GCMP-256

2─255: reserved
	The cipher suite used for the key(s)

	Key Type
	Enumeration
	Pairwise, Group
	Indicates if the key is pairwise or group.

	Elliptic curve
	Unsigned char
	0: curve 25519

1: curve 256

2: curve 384

3 – 255: reserved
	The standard elliptic curve used to derive the keys

	Receive Sequence Count
	Octet
	6 octets
	Value to which the replay counter is initialized. 

	Key Data
	String of Octets
	Octets
	Set of pairwise keys or Group key


Table 67 - Key Data parameters
	Key Type
	Key data

	Pairwise
	IK, SPK, Signature, OPK, EK

	Group
	GK


	Octets: 1
	Bits: 0-1
	Bits: 2:7
	Octets: 6
	Octets: 1
	Variable
	Octet: 1
	Variable

	Key cipher suite
	Key type
	Elliptic curve
	RSC
	Key Data Length
	Key Data
	Encrypted Data Length
	Encrypted Data


Figure 63— The Content field of the Public Key Request command

Key Data Length in octets: 0 to 255 
Key Data defined in Table 67.
Encrypted Data Length in octets: 0 to 255
Encrypted Data is implementation specific. For instance, the encrypted ASCII string corresponding to “Hello World”.
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