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Note to editor: 

The text below is the draft text with everything except the Annex D text deleted, which caused the annex number to revert to A and equation numbering to start from 1.  You can choose to either paste the full text below to replace Annex D in the next draft or individually integrate the changes (which are tracked to facilitate this).  

Annex A 
(informative)
The mathematics of two-way ranging
A.1 Single-sided two-way ranging error due to clock offset

With reference to Figure 112, the times Tround and Treply are measured independently by device A and B using their respective the local clocks, which have some clock offset error eA and eB from their nominal frequency.  As a result, Tprop is then actually: 
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And, the error in the range estimate equation (given in 13.3.2) is: 
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Or:
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Or, since Treply is 500 to 5000 times bigger than Tprop, for the purpose of simplifying the error estimate we can take Treply as (almost) the same as Tround and can be use Treply in place of Tround to give an error estimate:
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Based on this equation, Table 149 presents the typical errors in SS-TWR time-of-flight estimation depending on the reply time, Treply, and the total clock offset error.
Table 149—typical clock induced error in SS-TWR time-of-flight estimation

	clock error

Treply
	2 ppm
	5 ppm
	10 ppm
	20 ppm
	40 ppm

	100 µs
	0.1 ns
	0.25 ns
	0.5 ns
	1 ns
	2 ns

	200 µs
	0.2 ns
	0.5 ns
	1 ns
	2 ns
	4 ns

	500 µs
	0.5 ns
	1.25 ns
	2.5 ns
	5 ns
	10 ns

	1 ms
	1 ns
	2.5 ns
	5 ns
	10 ns
	20 ns

	2 ms
	2 ns
	5 ns
	10 ns
	20 ns
	40 ns

	5 ms
	5 ns
	12.5 ns
	25 ns
	50 ns
	100 ns


Table 149 shows that quite accurate results are achievable when short messages are used (e.g. with shorter preamble lengths and higher data rates) to give small reply time and more accurate clock sources are employed in the PDs. Note: the reply time Treply is not just the RX-to-TX turnaround time but also includes the message length.    An error of 1 ns in time-of-flight is equivalent to a 30 cm error in distance.
A.2 Deviation of double-sided two-way ranging formula

Figure 139 shows the two round trips of double-sided ranging and defines the terms used for the round trip times, 
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 and 
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, and the reply times, 
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 for the pair of devices, A and B, participating in the two-way ranging exchange to measure the time-of-flight, 
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Figure 139—terms used in deriving the double-sided two-way ranging formula

In Figure 139, device A transmits a message, P1, to device B.  Device B receives this message a short time later and after a time, 
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, it transmits a message, P2, back to device A.  Message P2 arrives at device A at a time 
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 after it transmitted message P1.  These then have the relationship:
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So
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In practice, the times are measured by real clocks in A and B, which will run independently, either faster or slower than an ideal clock, synchronized to their local reference frequency generator which can be assumed to be a constant frequency over the duration of the ranging exchange. Let us say that Clocks A and B run respectively at 
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 and 
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 times the frequency of an ideal, true, clock.  Any time measurements will be multiplied by these constants, 
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.  Denoting the actual time estimates for 
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. Then, since 
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 is measured at A by A’s clock:
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And, similarly 
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Using 
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 etc. as estimates for 
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 etc. we introduce a measurement error, so for example if 
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 is an estimate of 
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 we can say for a single round trip exchange
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And, the error in the estimation is 
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For the UWB physical layer the values of the expressions 
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 may be up to 20 ppm, i.e. 20x10-6, and for accurate ranging it is important to keep the error below 100 ps (1x10-10) which means the delays e.g. 
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 must be kept below about 5 µs which is not possible where even short UWB frames are typically > 100 µs long.  The solution is to use two round trip delays.

We know from (67) that
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And similarly
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Then from (72) and (64) we can say
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And from (74) and (66)
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And similarly
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In (74), (75), and (76) we have quantities that we can measure, 
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b. But we have no way of measuring 
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. And the errors in these quantities swamp the value of Tf.  There is however one thing we can do. If we multiply 
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, the bulk of the value of the product will be the product of 
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. For this term in the product, the 
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 constants cancel each other out. 

Then, from (74), (75), and (76)
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And, from (79), (75), and (76)
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On left hand side, taking out 
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 and multiplying above and below by 
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So finally
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And similarly
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We now have two possible estimates for 
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 < 1.00002,  we can estimate 
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These estimates are very close to the actual 
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 are very close to one and, crucially, their accuracy is independent of the response delays employed at A and at B.

Whether a system should use formula (84) or formula (85) would depend on which clock it expects to be more accurate. For example, if the system knows B has a higher accuracy clocks then it should use formula (85).  If it expects neither to be more accurate than the other and it is more accurate to use the average result from (84) and (85) since this will always be as good as, or better than, the worst of the two (85) and (84). 

This average can be approximated by the following formula that combines (84) and (85):
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For double-sided two-way ranging it is generally suggested that the delay times 
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 have to be nearly equal for the overall error to be acceptably small, but this is not a restriction when employing equations (84), (85) and (86), that burden is removed, so it is NOT required the use of the same response time at each end.  This gives much more implementation flexibility within the individual nodes participating in a ranging exchange and also facilitates more efficient implementations when a group of N nodes want to find the ½·N·(N-1) distances between each other.  Here, instead of separated ranging exchanges, messages can be combined, (e.g. a response from node B to Node A could also act as a ranging initiation message other nodes), to do the distance measurements with a much reduced over the air traffic, perhaps as few as 2·N messages. 

A.3 Asymmetric double-side two-way ranging error due to clock offset

Formulas (82) and (83) give the time of flight results (TOF) results including the clock offset errors. For the average formula then we can similarly say 


[image: image182.wmf]÷

ø

ö

ç

è

æ

+

=

2

ˆ

b

a

f

fab

k

k

T

T


Thus, the error in the estimated 
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Or
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To size this error, if devices A and B have clocks, where each are 20 ppm away from the nominal clock in directions make their combined error additive and equal to 40 ppm, then 
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 and 
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 might both be 0.99998 or  1.00002. 

Even with a fairly large UWB operating range of say 100 m, the TOF is just 333 ns, so the error is:  

20×10-6 × 333×10-9 seconds, which is 6.7×10-12 seconds or 6.7 picoseconds.  

Again note that these error levels do NOT require the use of the same response time at each end. 

At these error levels the precision of determining the arrival time of the RMARKER is actually the more significant source of error.  This depends on implementation but for the UWB PHY it might typically be expected to fall in a range from 1 ns down to 100 ps. 
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