Submission Title: Channel Model for Intra-Device Communications

Date Submitted: 15 January 2016
Source: Alexander Fricke, Thomas Kürner, TU Braunschweig
Mounir Achir, Philippe LeBars, CANON

E-Mail: fricke@ifn.ing.tu-bs.de/t.kuerner@tu-bs.de
mounir.achir@crf.canon.fr / philippe.lebars@crf.canon.fr

Re: n/a

Abstract: In this contribution, the modeling methodology and results for the propagation channel encountered in the application intra-device communications are presented.

Purpose: Contribution towards developing an intra-device channel model for use in TG 3d

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Channel Model for Intra-Device Communications

Alexander Fricke, Thomas Kürner
TU Braunschweig

Mounir Achir, Philippe LeBars
CANON
Outline

• General Modeling Approach
• Intra-Device Scenarios
• Intra-Device Results
• Conclusion
General Modeling Approach

- The channel model is derived from a ray-tracing approach that has been developed to account for the peculiarities of intra-device communications in the THz - range
- It includes the electromagnetic influence of plastic layers, metals and printed circuit boards
- Moreover, the characteristics of gaussian antenna profiles are included

- From the ray-tracing results, the characteristics of the channel regarding cluster composition, path loss and polarization properties as well as angular and temporal profiles are extracted
- These characteristics are used to configure a so-called channel generator which is utilized to generate a large number of realistic channel realizations (i.e. frequency responses) for the corresponding use cases
Structure of the Channel Description

Derivation of Channel Statistics

- Cluster Composition
 - Time of Arrival
 - Mean Path Loss θ/ϕ
 - Depolarization
 - Reflection Angles
 - Angles of Departure/Arrival

Ray-Tracing Results
Cluster Composition (1)

- The most important component of every channel realization is the cluster composition of each channel.
- By holding the actual number and types of propagation paths, it contains most of the implicit information regarding the underlying channel geometry.
- This kind of information assures that the channel realizations produce realistic channel transfer functions that may actually occur inside a real channel.

![Diagram](image)

<table>
<thead>
<tr>
<th>Wall</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>1</td>
</tr>
<tr>
<td>Bottom</td>
<td>2</td>
</tr>
<tr>
<td>Left</td>
<td>3</td>
</tr>
<tr>
<td>Right</td>
<td>4</td>
</tr>
<tr>
<td>Front</td>
<td>5</td>
</tr>
<tr>
<td>Back</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Cluster Composition (2)

- For every kind of propagation cluster such as ‘reflection from a PCB’ or ‘double reflection from plastic surfaces’, a Gaussian Mixture Model (GMM) is generated.
- From the GMM, the actual cluster composition of a channel realization is drawn.
After generating the cluster composition, the propagation time of each path (Time of Arrival, ToA), is generated.

It is assumed, that the propagation delays of the various cluster types follow normal distributions.

For the direct path, the propagation delay is modeled as absolute delay. For all reflected clusters, the delay is modeled with respect to the line-of-sight component to ensure physical correctness.
For the ToA and all following modeling steps, the parameters of the corresponding distribution functions are stored for every possible cluster type. This way, a large number of parameters has to be stored; however, the channel model again takes a large amount of implicit geometrical information, ensuring the generation of channel impulse response that correspond to realistic propagation channels.
Mean Path Loss (1)

- It is considered **physically meaningful** that the path loss is modeled as a function of path delay.
- The **mean path loss** is evaluated for both canonical polarizations.
- For the path loss and all other characteristics that are modeled as functional relationships, the underlying form of the functions are **second order polynomials** (sufficient for small value ranges).

Along with this functional relationship, the **mean average error** of the fit is again modeled as a second order function.
The mean path loss and the mean average error are then fed to a Gaussian Distribution (GD) to generate the actual mean path loss values for a concrete channel realization.
In the same manner as the path delays, the first reflection angles of all reflected paths are modeled as *functions of the path delay.*

Different geometries may lead to *varying types of relationships*

In the case of *n*-th-order *reflections*, the reflection angle is modeled as a *function of the corresponding (n-1)th order* reflection angle.
Depolarization

- To this point, the mean path loss properties have been evaluated for the phi and theta components of the electromagnetic field.
- However, the channel matrix of a polarimetric radio channel consists of four elements to account for the phenomenon of depolarization.

\[
\begin{pmatrix}
E_{Rx,\nu,\phi} \\
E_{Rx,\nu,\phi}
\end{pmatrix}
=
\begin{pmatrix}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{pmatrix}
\begin{pmatrix}
E_{Tx,\nu,\phi}
\end{pmatrix}
\]

- In the above expressions, the elements \(H_{11}\) and \(H_{22}\) lead to a talk-over between the two canonic polarizations.
- Thus, after the generation of the mean path losses for theta- and phi-polarization, the depolarization angle of each cluster is derived by

\[
\gamma_{depol} = \tan^{-1}\left(\frac{H_{12}}{H_{11}}\right) = \tan^{-1}\left(\frac{H_{21}}{H_{22}}\right)
\]

- As no functional dependency (e.g. to the time of arrival) could be observed, all depolarization angles for all reflection processes are modeled as Gaussian Distributions.
The final component necessary to fully characterize the Terahertz communication channel is the **angular profile** at the **transmitter** and the **receiver** site.

As it is considered geometrically meaningful, the angle of departure at the Tx and the angle of arrival at the Rx are modeled **jointly for elongation theta and azimuth phi**

As a consequence of the above observations, the AoA and AoD profiles in theta and phi are modeled as two-dimensional correlated probability densities (**Copula Distributions**).
Due to the **broadband nature** of the investigated propagation channels, a single **mean path-loss** value is **not enough** information to characterize the propagation paths.

Instead, the path loss is always a **function of frequency** due to dispersion stemming from Friis Transmission Equation as well as from the reflection processes at thin layers and printed circuit boards.
Channel Transfer Function

The CTF provides a complete description of the propagation channel in the frequency range under consideration:

\[
H(f, \vartheta_{Tx}, \varphi_{Tx}, \vartheta_{Rx}, \varphi_{Rx}, P_{Tx}, P_{Rx}) = \sum_i A_{Rx}(\vartheta_{Rx} - \vartheta_{AoA,i}, \varphi_{Rx} - \varphi_{AoA,i}, P_{Rx}) \cdot CTF_i(f, H_i) \\
\cdot A_{Tx}(\vartheta_{Tx} - \vartheta_{AoD,i}, \varphi_{Tx} - \varphi_{AoD,i}, P_{Tx})
\]

The structure of the CTF_i of the several clusters is:

\[
CTF_i(f, H_i) = \begin{pmatrix} H_{i,11}(f) & H_{i,12}(f) \\ H_{i,21}(f) & H_{i,22}(f) \end{pmatrix}
\]

The terms of the transmitting and receiving antennas are:

\[
A_{Tx/Rx} = g_{Tx/Rx}(\vartheta_{Tx/Rx} - \vartheta_i, \varphi_{Tx/Rx} - \varphi_i) \cdot \begin{pmatrix} 1 \vartheta_{Tx/Rx} \\ 1 \varphi_{Tx/Rx} \end{pmatrix}
\]
Outline

• General Modelling Approach
• Intra-Device Scenarios
• Intra-Device Results
• Conclusion
Intra-Device Communication Scenarios

Chip to Chip

LOS Scenario

- **Tx** and **Rx** mounted on the same surface under LOS conditions; both antennas with perfectly aligned pencil-beams.

NLOS Scenario

- **Tx** and **Rx** mounted on the same surface under NLOS conditions; both antennas with pencil-beams aligned towards a reflection path.

Board to Board

LOS Scenario

- **Tx** and **Rx** mounted on opposing surfaces, perfectly aligned with pencil beams towards each other.

C2C LOS Condition

- HPBW **Tx** (Θ, ϕ): $16.2^\circ, 17.2^\circ$; 20.35dBi

C2C NLOS Condition

- HPBW **Rx** (Θ, ϕ): $16.2^\circ, 17.2^\circ$; 20.35dBi

Board to Board

- HPBW **Tx** (Θ, ϕ): $16.2^\circ, 17.2^\circ$; 20.35dBi

- HPBW **Rx** (Θ, ϕ): $16.2^\circ, 17.2^\circ$; 20.35dBi
As already observed for the air-dielectric communication types, the path-loss of the main signal follows a log-distance dependent behavior under LOS conditions.
For the **directed NLOS** operational mode, the log-distance dependency of the path loss is not valid anymore. The simulated path losses are **rather equally distributed** over a certain amplitude range.

This comprehensible since the length of the directed NLOS propagation path is **only indirectly coupled** to the separation between Tx and Rx.
The path-loss characteristics for board to board communications again show the same *log-distance dependent behavior* as for the already investigated LOS communication types.
Intra-Device Results: Path Loss Model

- For the **LOS** application cases, the path loss of the main signal follows the classical **log-distance dependency** already introduced

\[\text{PL}(d[m])_{\text{total}}[dB] = \text{PL}_{d_0}[dB] + 10 \cdot \gamma \cdot \log_{10}\left(\frac{d[m]}{d_0[m]}\right) + \chi_g \]

- The parameters for the LOS operational modes are the following

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(PL_{d_0})</th>
<th>(d_0)</th>
<th>(\gamma)</th>
<th>RMSE((\chi_g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip to Chip LOS, vertical</td>
<td>16.5</td>
<td>0.05</td>
<td>2.007</td>
<td>1.1934</td>
</tr>
<tr>
<td>Chip to Chip LOS, circular</td>
<td>16.5</td>
<td>0.05</td>
<td>1.969</td>
<td>1.1020</td>
</tr>
<tr>
<td>Board to Board, vertical</td>
<td>16.5</td>
<td>0.05</td>
<td>1.977</td>
<td>1.1502</td>
</tr>
<tr>
<td>Board to Board, circular</td>
<td>16.5</td>
<td>0.05</td>
<td>1.951</td>
<td>1.1437</td>
</tr>
</tbody>
</table>

- For Chip to Chip Communications in **NLOS** configuration, the observed path loss can be modeled by a **linear relationship** between Tx/Rx separation and path loss

\[\text{PL}(d[m])_{\text{total}}[dB] = \text{PL}_0[dB] + \xi \cdot d[m] + \chi_g \]

- The parameters of which are

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(PL_{d_0})</th>
<th>(d_0)</th>
<th>(\gamma)</th>
<th>RMSE((\chi_g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip to Chip LOS, vertical</td>
<td>44.85</td>
<td>40.64</td>
<td>1.1934</td>
<td>44.85</td>
</tr>
<tr>
<td>Chip to Chip LOS, circular</td>
<td>51.49</td>
<td>43.13</td>
<td>1.1020</td>
<td>51.49</td>
</tr>
</tbody>
</table>
Intra-Device Results: Impulse Responses

Chip to Chip LOS

Chip to Chip NLOS

Board to Board

January 2016

Alexander Fricke (TU Braunschweig)
Outline

- General Modelling Approach
- Intra-Device Scenarios
- Intra-Device Results
- Conclusion
Conclusion

- The characteristics of the channel model are derived from a ray-tracing approach for intra-device communications in the THz - range

- These characteristics configure a so-called channel generator which is utilized to generate a large number of realistic channel transfer functions

- The path loss models and envelopes of the impulse responses have shown that
 - Different application cases lead to varying channel statistics
 - Simple figures of merit such as mean path loss and exponential decay are not sufficient
 - Antenna characteristics such as polarization and beamwidth play a significant role

- Thus, a set of realistic channel transfer functions shall be generated for the application cases and configurations

- In the proposal evaluation process, these channel transfer functions shall serve as foundation for the link-level simulations, e.g. to provide impulse responses as input to a tapped delay line model
Thank You
for Your Attention