Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Panasonic 802.15.7r1 Proposal

Date Submitted: January, 2016

Source: Hideki Aoyama, Mitsuaki Oshima
Panasonic Corporation
contact: aoyama.hideki@jp.panasonic.com

Abstract: Panasonic 802.15.7r1 Proposal

Purpose: Call for Proposals Response

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Requirements

• Flicker free:
 average luminance must be constant

• Of-Off modulation:
 signal must be modulated with monochrome On
 and Off state of luminance (Off state may not be
 zero luminance) so as to use most of LED devices
 as transmitters
Purposes of Communications

• ID broadcast
• Unidirectional data transfer
Modes

Mode 1
for ID broadcast mode

Mode 2
for ID broadcast mode
for low luminance mode

Mode 3
for unidirectional data transfer mode
Mode 1

Modulation [us]
\[(P_1, P_2, P_3, P_4) = (100, 90, 90, 100)\]
\[D_{Ri} = 120 + 20 \times w_i \ (i \in 1 \sim 4, w_i \in 0 \sim 15)\]
\[D_{Li} = 120 + 20 \times (15 - w_i)\]

A transmitter can send either or both of Data R and L
Mode 2

Modulation [us]

\[(P_1, P_2, P_3) = (160, 180, 160)\]

\[D_i = 180 + 20 \times w_i \text{ (i } \in 1\sim4, w_i \in 0\sim15)\]

Pulse width < 10
Mode 3

Modulation [us]

\[(P_1, P_2, P_3, P_4) = (50, 60, 60, 50)\]

\[D_{2i} + D_{2i+1} = 100 + 15 \times x_i\]

\[(i \in 1 \sim N, x_i \in 0 \sim 15, D_{2i} > 50, D_{2i+1} > 50)\]
Packet Modulation for ID Broadcast
Packet Modulation

<table>
<thead>
<tr>
<th>bit 1</th>
<th>bit 2</th>
<th>bit 3</th>
<th>bit 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1) = ((P_1), (D_{a1}), (S), (D_{b1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_2) = ((P_2), (D_{a2}), (A_1), (D_{b2}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_3) = ((P_3), (D_{a3}), (A_2 / D_{a6}), (D_{b3}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_4) = ((P_4), (D_{a4}), (A_2 / D_{a5}), (A_3 / D_{b4}))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A : Address	1-4 bit
D : Data	4-6 + 3-4 bit
P : Parity	4 bit
S : Stop bit	1 bit
Packet Division (1, 2)

Division (1)

![Diagram of Packet Division (1)]

- **Data 7**
 - **Da (1)**: 4
 - **Db (1)**: 3

- **Packet 1**
 - **S**: 1
 - **A**: 4 0000
 - **D_a (1)**: 6
 - **D_b (1)**: 4

Division (2)

![Diagram of Packet Division (2)]

- **Parity 1**
- **Data 16**
 - **D_a (1)**: 6
 - **D_a (2)**: 4
 - **D_b (1)**: 4
 - **D_b (2)**: 3

- **Packet 1**
 - **S**: 1
 - **A**: 1
 - **D_a (1)**: 6
 - **D_b (1)**: 4

- **Packet 2**
 - **S**: 1
 - **A**: 4 1000
 - **D_a (2)**: 4
 - **D_b (2)**: 3
Packet Division (3, 4)

Division (3)

\[
\begin{array}{c|c|c}
\text{Data} & 16 \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Data}_a & 9 \\
\hline
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Parity} & 5 \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Data}_a & 9 \\
\hline
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{CRC} & \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{CRC} & \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{Parity} & 5 \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{Parity} & 4 \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{CRC} & \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{CRC} & \\
\hline
\text{Data}_a & 9 \\
\text{Data}_b & 7 \\
\end{array}
\]

S 1 2 5 4
A 0 0 1 0
D_a (1) D_a (2) D_a (3)
D_b (1) D_b (2) D_b (3)

Packet 1

Packet 2

Packet 3

Division (4)
Same manner as Division (3)
Packet Division (5-7)

Division (5)

```
<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>D_a (1)</th>
<th>D_a (2)</th>
<th>D_a (3)</th>
<th>D_a (4)</th>
<th>D_a (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packet 1
```

```
<table>
<thead>
<tr>
<th>Parity</th>
<th>Data_a</th>
<th>Data_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>D_a (1)</th>
<th>D_a (2)</th>
<th>D_a (3)</th>
<th>D_a (4)</th>
<th>D_a (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

CRC
```

```
<table>
<thead>
<tr>
<th>Parity</th>
<th>Data_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>D_b (1)</th>
<th>D_b (2)</th>
<th>D_b (3)</th>
<th>D_b (4)</th>
<th>D_b (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

CRC
```

```
<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>D_a (4)</th>
<th>D_b (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Packet 4
```

Division (6, 7)

Same manner as Division (5)
Packet Division (8)

Division (8)

Reed-Solomon

Parity 16

Data 47

Padding 1

<table>
<thead>
<tr>
<th>Label</th>
<th>Bit Size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet 1</th>
<th>Packet 7</th>
<th>Packet 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 1 A 3 D_a D_b (1) 8</td>
<td>S 1 A 3 D_a D_b (7) 8</td>
<td>S 1 A 4 D_a D_b (8) 7</td>
</tr>
<tr>
<td>0 000</td>
<td>0 011</td>
<td>1 110</td>
</tr>
</tbody>
</table>
Packet Division (9-16)

Division (N = 9-16)

Reed-Solomon

Parity
14

Data
7 * (N – 2)

\(D_a D_b (1) \)
7

\(D_a D_b (N-1) \)
7

\(D_a D_b (N) \)
7

Packet 1

Packet N-1

Packet N

S 1 0 0000
A 4

S 1 0 xxxx
A

S 1 1 xxxx
A

D_a D_b (1)
7

D_a D_b (N-1)
7

D_a D_b (N)
7

label
bit size
value
ID Size

<table>
<thead>
<tr>
<th>Packet Division</th>
<th>Data Size [bit]</th>
<th>Full mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short mode</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>84</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>91</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>98</td>
</tr>
</tbody>
</table>