Submission Title: High-speed VLC for Wireless backhaul communication

Date Submitted: January 2016

Source: Prof. Nan Chi, Dr. Junwen Zhang

Company: Fudan Univerisity

Address: Fu Dan University, 220 Handan Rd., Yangpu District, Shanghai

Voice: Tel: 0086-21-65642983, E-Mail: nanchi@fudan.edu.cn hustzljw@gmail.com

Abstract: In response to «Call for Proposals for OWC Channel Models» issued by 802.15.7r1, this contribution presents the PHY technologies proposal of outdoor free space VLC long distance transmission for high rate PD communication in wireless backhaul (mobile back haul).

Purpose: Call for Proposal Response

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
High-speed VLC for Wireless backhaul communication
Outlines

- Background and Introduction
- Scenario Targets
- Description of Proposed Solutions
- Some Experiment Results
- Occlusions
4.5.1 Applications/Use cases

The following High Speed Photodiode Receiver applications/use cases were presented in response to TG7r1 Call for Applications.

……

4. **Wireless Backhaul (Small Cell Backhaul, Surveillance Backhaul, LAN Bridging)**

4.5.3 ……The standard must define a range of data rates with minimum supported connectivity of at least 1 Mbps at the PHY SAP. The standard must support at least one PHY mode that supports peak data rates of 10 Gbps at the PHY SAP.

B4: Wireless Backhaul
Application Scenarios: Mobile backhauling

Backhaul

Backhaul is a top priority for small cell deployments
• 80% of small cells will have wireless backhaul
• Cost of fiber is ~4x greater than wireless (cumulative CAPEX/OPEX)
• Small Cell mesh inter-connectivity over ~250m
• Large indoor and outdoor public spaces

* According to InterDigital Whitepaper 2013

- VLC outdoor free-space high speed PD communication for mobile backhaul

- It shares the same CAPEX/OPEX advantages with mmW
- More competitive with lower device cost

Characters:

- Large indoor/outdoor public spaces
- Distance: ~50 m~1 km
- Speed: ~Gbps
- Link: mainly Point-to-point

*A typical mmW backhaul link
Wireless Backhaul

- Requirements

<table>
<thead>
<tr>
<th></th>
<th>Single Hop Wireless Backhauling</th>
<th>Multiple Hop Wireless Backhauling</th>
</tr>
</thead>
<tbody>
<tr>
<td># of hops</td>
<td>1</td>
<td><5</td>
</tr>
<tr>
<td>Distance per link</td>
<td><1km</td>
<td><150m</td>
</tr>
<tr>
<td>Data Rate</td>
<td>~2-20Gbps</td>
<td>~2-20Gbps</td>
</tr>
<tr>
<td>Latency</td>
<td><35ms</td>
<td><35ms (total)</td>
</tr>
<tr>
<td>QoS/QoE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Availability</td>
<td>99.99%</td>
<td>99.99%</td>
</tr>
</tbody>
</table>

Requirements are open for discussion

Source: from 802.11 TGay Use Cases Submission
Targets

- High-speed VLC Out-door long-distance communication for mobile backhaul
- Data Rates Speed: \(\sim \text{Gbps} \)
- Distance: 50m~1km, typical \(\sim 50-500 \text{ m} \)
- Environment: Large indoor/outdoor public spaces
- Link: mainly Point-to-point

To provide a Out-door VLC free-space link for high-speed user applications.
Proposal Research Route

VLC Free Space Transmission Channel Model
- LED/PD Modulation Property
- Optics System design
- Free-space channel

Key Technique for High Speed Outdoor VLC Transmission System
- Modulation formats
- Multiplexing Technology
- Pre Equalization and post-equalization
- Diversity reception technology

Simulation for Outdoor Long Distance VLC Transmission System
- System Structure and Simulation Parameters
- Simulation Results and Analysis

Outdoor Transmission Experiments
- System Structure
- Results and Analysis
Physical Layer of VLC system

TX:
- electronics: LED driving circuit, signal processing (coding, modulation, equalization)
- optics: transmitter antenna

RX:
- optics: receiver antenna, PD
- electronics: signal processing (decoding, demodulation, equalization)
To achieve the high speed VLC

- The pre-equalization and post-equalization technology for the high-speed VLC systems

- Modulation formats:
 - Single-carrier based CAP-QAM
 - Multi-carrier based OFDM or **DMT with bit-loading**

- Multiplexing Technology
 - Multiplexing Technology using different color LED
 - MIMO for multiplexing gain
 - Receiver-diversity reception technology
1. LED bandwidth limitations

- Phosphor LED 10dB bandwidth < 15MHz
- RGB LED 10dB bandwidth < 25MHz

2. VLC system Nonlinear

- LED Nonlinearity
- Inter-symbol interference
- LED nonlinearity

Higher order modulation and pre-equalization

- Software/hardware pre-equalization
- OFDM/DMT
- Single Carrier, CAP and so on

Advanced post-equalization techniques

- ZF, DFE, RLS, DD-LMS
- CMMA, M-CMMA
- Volterra
VLC Channel Pre-equalization

Pre-equalization schemes:

- **Hardware Equalization**: hardware circuit design
- **Software Equalization**: digital signal processing
Software Pre-equalization

- Pre-equalization
 - Obtain the channel knowledge (H) at the RF domain
 - Make pre-equalization Tx^*1/H at the baseband

Hardware bridged-T amplitude equalizer

- Z_{11}: RLC network1 (R_1, C_1 and L_1)
- Z_{22}: RLC network2 (R_4, C_2 and L_2)
- $R_2 = R_3 = R_0$

$Z_{11} \times Z_{22} = R_0^2$

\[S_{21} = \frac{1}{1 + \frac{R_L}{R_4 + \frac{j\omega L_1}{1 - \omega^2 C_1 L_1}}} \]

X. Huang, et al, OFC 2015, Tu2G.1
Hardware bridged-T amplitude equalizer Performances

✓ Spectrum of a 250-MHz CAP signal after pre-EQ
Carrier-less Amplitude Phase (CAP) modulation format

\[s(t) = I(t) \otimes f_I(t) - Q(t) \otimes f_Q(t) \]

- Carrierless Amplitude and Phase (CAP) is a multi-level modulation scheme proposed by Bell Lad in 1970
- At transmitter a pair of orthogonal filters is used as Hilbert pair for modulation
- At receiver a pair of matched filter is used for demodulation
DMT with Bit-loading Background

The diagram illustrates the process of DMT with bit-loading background. It shows the stages from serial to parallel conversion, computation of complex coefficients, IFFT, parallel to serial conversion, and finally, D/A conversion. Each stage involves operations on data bits and complex numbers to transmit information efficiently. The diagram is a visual representation of the DMT technique, which is crucial for understanding the underlying principles of data transmission in wireless communication systems.
Bit-loading based OFDM-DMT modulation for Gbps VLC

Bit-loading based OFDM-DMT modulation for Gbps VLC

(a) SNR estimation (dB)

(b) Bit allocation

(c) Power allocation

Volterra nonlinear equalizer

- LED nonlinearity seriously degrades the system performance;
- The LED forward current exhibits strong nonlinearity with the bias voltage;
- Two factors dominate the nonlinear effects: DC bias voltage and the input signal peak-to-peak value (Vpp);
The Volterra series based equalizer is considered as a promising solution to mitigate the LED nonlinearity;

The Volterra series expansion contains a linear term and nonlinear series.

M-CMMA is utilized to update the weights of the nonlinear equalizer without using training symbols.
Color-division Multiplexing

- Same idea of Wavelength-division multiplexing (WDM) used in fiber-optics
- To triple the capacity or speed of VLC system
- RGB bandwidth is larger than the p-LED
RGB LED (LED Engine) Multiplexing for high-speed VLC (WDM)
Out-door Long distance testing results

BER vs distance

- At the distance of 50m, the total data rate of 1.8Gb/s can be achieved with the BER less than the 7% FEC limit of 3.8x10^{-3}.
- The illuminations for each color chip are 15lx, 19lx and 10lx at 50m.
- It should be noted that the experiment is conducted at about 9:00 PM. The ambient light noise mainly comes from the artificial light sources such as the street lights.
<table>
<thead>
<tr>
<th>LED</th>
<th>Equ.</th>
<th>Modulation</th>
<th>Data rate</th>
<th>receiver</th>
<th>distance</th>
<th>institution</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>White light</td>
<td>Pre</td>
<td>OOK-NRZ</td>
<td>40Mbit/s</td>
<td>PIN</td>
<td>2m</td>
<td>University of Oxford</td>
<td>PTL2008</td>
</tr>
<tr>
<td>Blue light</td>
<td>-</td>
<td>DMT-QAM</td>
<td>200Mbit/s</td>
<td>PIN</td>
<td>2m</td>
<td>Fraunhofer HHI</td>
<td>PTL2009</td>
</tr>
<tr>
<td>RGB LED</td>
<td>-</td>
<td>DMT-WDM</td>
<td>803Mb/s</td>
<td>APD</td>
<td>12cm</td>
<td>Fraunhofer HHI</td>
<td>OFC2011</td>
</tr>
<tr>
<td>White light</td>
<td>Post</td>
<td>CAP</td>
<td>1.1Gb/s</td>
<td>PIN</td>
<td>23cm</td>
<td>National Chiao Tung University</td>
<td>PTL2012</td>
</tr>
<tr>
<td>RGB LED</td>
<td>Post</td>
<td>SC-FDE</td>
<td>3.75Gb/s</td>
<td>APD</td>
<td>1cm</td>
<td>Fudan University</td>
<td>COL2013</td>
</tr>
<tr>
<td>Micro-LED</td>
<td>Pre/Post</td>
<td>HW OFDM</td>
<td>3 Gb/s</td>
<td>APD</td>
<td>5cm</td>
<td>Edinburgh University</td>
<td>PTL2014</td>
</tr>
<tr>
<td>RGB LED</td>
<td>Pre/Post</td>
<td>SC-FDE</td>
<td>4.22Gb/s</td>
<td>APD</td>
<td>10cm</td>
<td>Fudan Univ.</td>
<td>OPEX2014</td>
</tr>
<tr>
<td>RGBY LED</td>
<td>Pre/Post</td>
<td>DMT</td>
<td>5.6Gb/s</td>
<td>PIN</td>
<td>1.5m</td>
<td>Scuola Superiore Sant’Anna</td>
<td>ECOC2014</td>
</tr>
<tr>
<td>RGB LED</td>
<td>Pre/Post</td>
<td>CAP</td>
<td>4.5Gb/s</td>
<td>PIN</td>
<td>2m</td>
<td>Fudan Univ.</td>
<td>PJ2015</td>
</tr>
<tr>
<td>RGB LED</td>
<td>Pre/Post</td>
<td>CAP</td>
<td>1.8Gb/s</td>
<td>APD</td>
<td>50m</td>
<td>Fudan Univ.</td>
<td>OFC 2015</td>
</tr>
<tr>
<td>RGBY LED</td>
<td>Pre/Post</td>
<td>CAP</td>
<td>8Gb/s</td>
<td>PIN</td>
<td>1m</td>
<td>Fudan Univ.</td>
<td>PTL 2015</td>
</tr>
<tr>
<td>RGBY LED</td>
<td>Pre/Post</td>
<td>DMT-BPL</td>
<td>9.5Gb/s</td>
<td>PIN</td>
<td>1m</td>
<td>Fudan Univ.</td>
<td>Newly Achieved</td>
</tr>
</tbody>
</table>
Conclusion

In this contribution, we propose several general technique considerations for high rate PD VLC out-door communications.

- The out-door high-speed VLC modeling including three parts
 - LED/PD Modulation Property
 - Optical system design
 - Free-space channel

- The pre-equalization and post-equalization technology for the high-speed VLC systems

- Modulation formats:
 - Single-carrier based CAP-QAM
 - Multi-carrier based OFDM or DMT with bit-loading

- Multiplexing Technology
 - Multiplexing Technology using different color LED
 - MIMO for multiplexing gain
 - Receiver-diversity reception technology
Appendix
Post-equalization solutions:

- **ISI Equalization**: Classical DFE \rightarrow Modified Eqs
- **Nonlinear Compensations**: Volterra series
Receiver diversity technology

In receiver diversity, the outputs of multiple receivers are combined which is a weighted sum of the different branches

\[\sum_{i=1}^{M} \alpha_i r_i \]

The output SNR:
\[\gamma_{\Sigma} = \frac{r^2}{N_{tot}} = \left[\frac{\sum_{i=1}^{M} \alpha_i r_i}{\sum_{i=1}^{M} \alpha_i^2 N_i} \right]^2 \]

The goal of MRC is to find the weight to maximize the output SNR

According to the Schwarz inequality, it is found that:
the maximum SNR of the combiner output is the sum of SNRs in each branch:
\[\gamma_{\Sigma} = \sum_{i=1}^{M} \frac{r_i^2}{N_i} = \sum_{i=1}^{M} \gamma_i \]