#### **Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)**

Submission Title: High-speed VLC for Wireless backhaul communication
Date Submitted: January 2016
Source: Prof. Nan Chi, Dr. Junwen Zhang Company: Fudan University
Address: Fu Dan University, 220 Handan Rd., Yangpu District, Shanghai
Voice: Tel: 0086-21-65642983, E-Mail: nanchi@fudan.edu.cn hustzjw@gmail.com

**Abstract:** In response to «Call for Proposals for OWC Channel Models» issued by 802.15.7r1, this contribution presents the PHY technologies proposal of outdoor free space VLC long distance transmission for high rate PD communication in wireless backhaul (mobile back haul).

#### Purpose: Call for Proposal Response

**Notice:** This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

**Release:** The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

# High-speed VLC for Wireless backhaul communication

# Outlines

- Background and Introduction
- Scenario Targets
- Description of Proposed Solutions
- Some Experiment Results
- Occlusions

# Response to the TCD Document

#### 4.5.1 Applications/Use cases

The following High Speed Photodiode Receiver applications/use cases were presented in response to TG7r1 Call for Applications.

4. Wireless Backhaul (Small Cell Backhaul, Surveillance Backhaul, LAN Bridging)



B4: Wireless Backhaul

4.5.3 ......The standard must define a range of data rates with minimum supported connectivity of at least 1 Mbps at the PHY SAP. The standard must support at least one PHY mode that supports peak data rates of 10 Gbps at the PHY SAP.

#### **Application Scenarios: Mobile backhauling**



#### Backhaul

\*A typical mmW backhaul link

# Backhaul is a top priority for small cell deployments

•80% of small cells will have wireless backhaul
•Cost of fiber is ~4x greater than wireless (cumulative CAPEX/OPEX)

- •Small Cell mesh inter-connectivity over ~250m
- •Large indoor and outdoor public spaces
- \* According to InterDigital Whitepaper 2013

VLC outdoor free-space high speed PD communication for mobile backhaul

- It shares the same CAPEX/OPEX advantages with mmW
- More competitive with lower device cost

Characters:

- Large indoor/outdoor public spaces
- Distance: ~50 m~1 km
- Speed: ~Gbps
- Link: mainly Point-to-point

#### **Wireless Backhaul**

#### Requirements

٠

|                      | Single Hop<br>Wireless<br>Backhauling | Multiple Hop<br>Wireless<br>Backhauling |  |
|----------------------|---------------------------------------|-----------------------------------------|--|
| # of hops            | 1                                     | <5                                      |  |
| Distance per<br>link | <1km                                  | <150m                                   |  |
| Data Rate            | ~2-20Gbps                             | ~2-20Gbps                               |  |
| Latency              | <35ms                                 | <35ms (total )                          |  |
| QoS/QoE              | Yes                                   | Yes                                     |  |
| Availability         | 99.99%                                | 99.99%                                  |  |





Wireless backhauling with single hop



Targets

- High-speed VLC Out-door long-distance communication for mobile backhaul
- Data Rates Speed: ~Gbps
- Distance: 50m~1km, typical ~50-500 m
- Environment: Large indoor/outdoor public spaces
- Link: mainly Point-to-point

To provide a Out-door VLC free-space link for high-speed user applications.





#### Physical Layer of VLC system



#### **D**TX :

- electronics : LED driving circuit , signal processing (coding, modulation, equalization)
- optics : transmitter antenna

□ RX :

- optics : receiver antenna , PD
- electronics : signal processing (decoding, demodulation, equalization),

To achieve the high speed VLC

- The pre-equalization and post-equalization technology for the highspeed VLC systems
- Modulation formats:
- Single-carrier based CAP-QAM
- Multi-carrier based OFDM or DMT with bit-loading
- Multiplexing Technology
- Multiplexing Technology using different color LED
- MIMO for multiplexing gain
- Receiver-diversity reception technology

2. VLC system Nonlinear

Nonlinear Curve

**LED** Nonlinearity



# Tov Linearized Curve Tov Linearized Curve Linearized Curve Linearized Curve Bias Voltage (V) Inter-symbol interference LED nonlinearity Advanced post-equalization

techniques

# ZF、DFE、RLS、DD-LMS CMMA、M-CMMA

Volterra



Pre-equalization schemes:

Hardware Equalization : hardware circuit design

Software Equalization : digital signal processing

## **Software Pre-equalization**

#### **Pre-equalization**

-30

-40

-50

-60

-70

-80

-90

-100 L

**Submission** 

5

10

15 f/MHz

Y. Wang, et al, IEEE Communication Letters, Vol. 18, No. 10

20

25

30

Power/dBm

- ✓ Obtain the channel knowledge(H) at the RF domain
- ✓ Make pre-equalization Tx\*1/H at the baseband

Power/dBm

w/o pre-equization



## Hardware bridged-T amplitude equalizer



## Hardware bridged-T amplitude equalizer Performances



✓ Spectrum of a 250-MHz CAP signal after pre-EQ



- Carrierless Amplitude and Phase (CAP) is a multi-level modulation scheme proposed by Bell Lad in 1970
- At transmitter a pair of orthogonal filters is used as Hilbert pair for modulation
- At receiver a pair of matched filter is used for demodulation

# DMT with Bit-loading Background



# Bit-loading based OFDM-DMT modulation for Gbps VLC





X. Huang, et al, IEEE Photonics Journal, 2015

# Bit-loading based OFDM-DMT modulation for Gbps VLC



X. Huang, et al, IEEE Photonics Journal, 2015

#### Volterra nonlinear equalizer



- □ LED nonlinearity seriously degrades the system performance;
- □ The LED forward current exhibits strong nonlinearity with the bias voltage;
- Two factors dominate the nonlinear effects: DC bias voltage and the input signal peak-to-peak value (Vpp);



#### Principle

- □ The Volterra series based equalizer is considered as a promising solution to mitigate the LED nonlinearity;
- The Volterra series expansion contains a linear term and nonlinear series.
- M-CMMA is utilized to update the weights of the nonlinear equalizer without using training symbols

# **Color-division Multiplexing**



Same idea of Wavelength-division multiplexing (WDM) used in fiber-optics
 To triple the capacity or speed of VLC system
 RGB bandwidth is larger than the p-LED

#### **RGB LED (LED Engine) Multiplexing for high-speed VLC (WDM**



# Out-door Long distance testing results



- At the distance of 50m, the total data rate of 1.8Gb/s can be achieved with the BER less than the 7 % FEC limit of 3.8x10-3.
- □ The illuminations for each color chip are 15lx, 19lx and 10lx at 50m.
- □ It should be noted that the experiment is conducted at about 9:00 PM. The ambient light noise mainly comes from the artificial light sources such as the street lights.

| LED         | Equ.     | Modulation | Data rate | receiver | distance | institution                       | Data<br>source    |
|-------------|----------|------------|-----------|----------|----------|-----------------------------------|-------------------|
| White light | Pre      | OOK-NRZ    | 40Mbit/s  | PIN      | 2m       | University of<br>Oxford           | PTL2008           |
| Blue light  | -        | DMT-QAM    | 200Mbit/s | PIN      | 2m       | Fraunhofer HHI                    | PTL2009           |
| RGB LED     | -        | DMT-WDM    | 803Mb/s   | APD      | 12cm     | Fraunhofer HHI                    | OFC2011           |
| White light | Post     | CAP        | 1.1Gb/s   | PIN      | 23cm     | National Chiao<br>Tung University | PTL2012           |
| RGB LED     | Post     | SC-FDE     | 3.75Gb/s  | APD      | 1cm      | Fudan<br>University               | COL2013           |
| Micro-LED   | Pre/Post | HW OFDM    | 3 Gb/s    | APD      | 5cm      | Edinbourgh<br>University          | PTL2014           |
| RGB LED     | Pre/Post | SC-FDE     | 4.22Gb/s  | APD      | 10cm     | Fudan Univ.                       | OPEX2014          |
| RGBY LED    | Pre/Post | DMT        | 5.6Gb/s   | PIN      | 1.5m     | Scuola Superiore<br>Sant'Anna     | ECOC2014          |
| RGB LED     | Pre/Post | CAP        | 4.5Gb/s   | PIN      | 2m       | Fudan Univ.                       | PJ2015            |
| RGB LED     | Pre/Post | CAP        | 1.8Gbb/s  | APD      | 50m      | Fudan Univ.                       | OFC 2015          |
| RGBY LED    | Pre/Post | CAP        | 8Gb/s     | PIN      | 1m       | Fudan Univ.                       | PTL 2015          |
| RGBY LED    | Pre/Post | DMT-BPL    | 9.5Gb/s   | PIN      | 1m       | Fudan Univ.                       | Newly<br>Achieved |

# Conclusion

In this contribution, we propose several general technique considerations for high rate PD VLC out-door communications.

- The out-door high-speed VLC modeling including three parts
- LED/PD Modulation Property
- Optical system design
- Free-space channel
- The pre-equalization and post-equalization technology for the high-speed VLC systems
- Modulation formats:
- Single-carrier based CAP-QAM
- Multi-carrier based OFDM or DMT with bit-loading
- Multiplexing Technology
- Multiplexing Technology using different color LED
- MIMO for multiplexing gain
- Receiver-diversity reception technology

# Appendix



#### Post-equalization solutions:

➤ ISI Equalization : Classical DFE → Modified Eqs

Nonlinear Compensations : Volterra series

## Receiver diversity technology



In receiver diversity, the outputs of multiple receivers are combined which is a weighted sum of the different branches

the output SNR:

$$\gamma_{\Sigma} = \frac{r^2}{N_{tot}} = \frac{\left[\sum_{i=1}^{M} \alpha_i r_i\right]}{\sum_{i=1}^{M} \alpha_i^2 N_i}$$

٦2

The goal of MRC is to find the weight to maximize the output SNR According to the Schwarz inequality, it is found that: the maximum SNR of the combiner output is the sum of SNRs in each branch:

$$\gamma_{\Sigma} = \sum_{i=1}^{M} r_i^2 / N_i = \sum_{i=1}^{M} \gamma_i$$