Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: National Taiwan University 802.15.7r1 OCC Proposal

Date Submitted: 10 January, 2016 Source: Hsin-Mu Tsai, National Taiwan University Address: No.1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan Voice: +886 2 33664888 ext. 316, E-Mail: <u>hsinmu@csie.ntu.edu.tw</u>

Re: CFP Response

Abstract: CFP Response

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

National Taiwan University 802.15.7r1 OCC Proposal

Hsin-Mu (Michael) Tsai hsinmu@csie.ntu.edu.tw

Table of Content

- Requirements
- Background
- PHY proposal RS-FSK
- MAC proposal Frame Format for RS-FSK

REQUIREMENTS

Transmitter Requirements Overall objective: Retain the transmitter's original function

- The transmission should not create flickers visible to human eyes
- The transmitting LED should still retain **dimming** capability
- Use only ON and OFF binary levels to modulate data (simple transmitter design, minimum modifications to existing systems, cost efficient)
- Color is not used to modulate data (color is determined by user preference)

Receiver Requirements

Overall Objective: Use existing hardware

- Use off-the-shelf, **unmodified** rolling shutter camera as the receiver
 - Adding software (e.g. smartphone app) instantly gives existing devices the reception capability
 - The start of the exposure duration is assumed NOT controllable (unsynchronized channel)
 - Camera frame rate is NOT accurate and can vary over time

Receiver Requirements

- Cameras using different image sensors should be able to demodulate the same transmission simultaneously
 - Parameters that could be different include
 - Resolution
 - Row read-out duration
 - Frame rate
 - Exposure duration
 - TX-RX distance
- Camera receiver should be able to receive even when the transmitter does not occupy the entire image (operate at longer distance & in line-of-sight scenarios)

BACKGROUND

Light-to-Rolling-Shutter-Camera Channel

- Main characteristics:
 - 1. Rolling exposure process (rolling shutter sampling)
 - 2. Time gap
 - 3. Low-pass filtering due to integration during exposure

Global versus Rolling Shutter

Rolling Shutter

Comparison of Sampling Schemes

Global Shutter

Idle Period

Idle Period + Un-occupied Area

Idle Period + Un-occupied Area

Examples of Camera Parameters

	Image Resolution (X x Y)	Frame Rate (fps)	Measured Read-out Duration (μs)	Time Gap (ms) (Percentage of Frame Duration)
Apple iPhone 6 Plus	1920x1080	30	21.42	10.20 (30.60%)
Apple iPhone 5s	1920x1080	29.98	20.65	11.03 (33.10%)
Apple iPhone 4s	1920x1080	29.87	24.48	7.04 (21.03%)
HTC New One	1920x1080	29.94	19.08	12.79 (38.30%)
Samsung Galaxy S4	1920x1080	29.93	25.53	5.84 (17.48%)
Point Grey Flea3	2048x1080	30	14.73	17.42 (52.27%)

Low-pass Filtering due to Exposure

• Pixel intensity of y-th row of pixel(s):

$$I[y] = \int_{T_0 + (y-1)T_r}^{T_0 + (y-1)T_r + T_e} r(y, t) dt$$

- r(y, t): received signal of the y-th row at time t
- T_0 : start of exposure for this image frame
- T_e : exposure duration
- T_r : row read-out duration
- Long T_e results in significant low-pass filtering!

PHY PROPOSAL -ROLLING-SHUTTER FREQUENCY SHIFT KEYING

Rolling Shutter

Rolling Shutter – Frequency Shift Keying (RS-FSK)

RS-FSK Advantages

- 1. Average intensity stays the same for different symbols over one symbol period (avoid flickers)
- 2. The waveform can be demodulated by receivers with different (rolling shutter) sampling rates (i.e., read-out duration)
- 3. Demodulation is possible even when **partial symbol is lost** (cope with lossy channel)
- 4. Low-pass filtering does not destroy the signal as long as the exposure duration is not an integer multiples of the signal period
- 5. Dimming can be realized by changing the **duty cycle** of the signal

- YIN Accurate Frequency Estimation for RX Advantages:
 - 1. Time-domain autocorrelation handles variable signal length
 - 2. Parabolic interpolation improves accuracy when W is not an integer
- 3. Measures to handle slow varying DC, i.e., non-uniform illumination surface Show that all test cameras

RS-FSK Advantages

- 1. Average intensity stays the same for different symbols over one symbol period (avoid flickers)
- 2. The waveform can be demodulated by receivers with **different (rolling shutter) sampling rates** (i.e., read-out duration)
- 3. Demodulation is possible even when **partial symbol is lost** (cope with lossy channel)
- 4. Low-pass filtering does not destroy the signal as long as the exposure duration is not an integer multiples of the signal period
- 5. Dimming can be realized by changing the **duty cycle** of the signal

High-Order Modulation - Partial Symbol Loss

RS-FSK Advantages

- 1. Average intensity stays the same for different symbols over one symbol period (avoid flickers)
- 2. The waveform can be demodulated by receivers with **different (rolling shutter) sampling rates** (i.e., read-out duration)
- 3. Demodulation is possible even when **partial symbol is lost** (cope with lossy channel)
- **4.** Low-pass filtering does not destroy the signal as long as the exposure duration is not an integer multiples of the signal period
- 5. Dimming can be realized by changing the **duty cycle** of the signal

The Case Where RS-FSK is not Observed

When exposure is an integer multiple of the signal period

RS-FSK with Different Exposure Durations k = 1 $T_e = k \cdot \frac{1}{f} + (T_e \mod \frac{1}{f})$ Ion r(i,t)dt I_{off} 1/f $=\frac{I_{\rm on}+I_{\rm off}}{2}\cdot k\cdot \frac{1}{t}+I(T_e)$ $\mod \frac{1}{\epsilon}$ rowi T_e k = 3"Variation" over Average intensity Ion $\mathbf{T}_{\mathbf{e}} \mod \frac{\mathbf{I}}{\mathbf{r}}$ over k signal period As the exposure duration T_e I_{off} increases, "variation" becomes small 1/f compared to the average intensity rowi T_e

RS-FSK with Exposure / Low-pass Filtering

- 1. In most cases, **with arbitrary exposure duration setting**, RS-FSK signal remains detectable in the received images.
 - The observed signal frequency in the images is the same as the transmitted signal frequency
- 2. When the exposure duration is (approximately) an integer multiple of the signal period, the signal is NOT detectable.
 - This can be regarded as **channel fading** for that signal frequency
- 3. As the exposure duration increases, the difference between bright and dark strips (ON/OFF states) becomes small.
 - When this difference becomes less than the intensity resolution of the image, the signal is no longer visible.

Reasonable error probability up to tens of milliseconds

RS-FSK Advantages

- 1. Average intensity stays the same for different symbols over one symbol period (avoid flickers)
- 2. The waveform can be demodulated by receivers with **different (rolling shutter) sampling rates** (i.e., read-out duration)
- 3. Demodulation is possible even when **partial symbol is lost** (cope with lossy channel)
- **4. Low-pass filtering** does not destroy the signal as long as the exposure duration is not an integer multiples of the signal period
- 5. Dimming can be realized by changing the **duty cycle** of the signal

Dimming with Duty Cycle

MAC PROPOSAL – FRAME FOR RS-FSK

MAC Proposal

Main Objective: Compensate for significant signal loss and unsynchronized channel

Problems & Proposed Solutions:

1. Mis-aligned symbol boundary

Symbol Splitter

2. Lost symbol detection

3. Recover from loss

XOR-based Parity Code

1. Problem: Mixed-Symbol Frames

1. Solution: Symbol Splitter (SS)

2. Problem: Lost Symbol Detection

When TX frame duration $T_{\rm s,tx}$ < RX frame duration $T_{\rm f,rx}$

2. Solution: Embedded Sequence Number

*This is true when the TX & RX frame rates are not different by more than 2 times

3. Solution: XOR-Based Parity Code

Derivation of Symbol Loss Probability

$$P_{\text{loss}} = \max\left(\frac{T_{\text{gap}} - T_{\text{s,tx}}}{T_{\text{f,rx}}}, 0\right)$$
$$= \max\left(\frac{T_{\text{f,rx}} - (H-1)T_r - T_e - T_{\text{s,tx}}}{T_{\text{f,rx}}}, 0\right)$$

- H : Light size (number of rows)
- T_r : Read-out duration
- T_e : Exposure duration
- $T_{
 m s,tx}$: Transmitted symbol duration
- $T_{\rm f,rx}$: Receiving frame duration

Preamble – Read-Out Duration Estimation

Channel Estimation - T_r Transmitted W = 108 px W = 164 px W = 158 pxsignal 250 Hz iPhone 5c iPhone 5s iPhone 6 Plus Different cameras have different T_r ! Time Packet format Learn T_r from the preamble: Data $\implies T_r = \frac{\mathbf{1}}{2Wf_p}$ Preamble Symbol (known frequency f_p)

Proposed Frame Format

Additional frame header fields for open systems:

- Selection of PHY data and SS frequencies (Number of frequencies used: 2 byte; Actual used frequency in Hz, 2 byte per frequency)
- 2. Parity density N (1 byte)
- 3. Checksum (optional, 2-4 bytes)