Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Presentation on ULP GFSK PHY proposal

Date Submitted: November 2013

- **Source:** Henk de Ruijter, Ping Xiong, Silicon Labs 940 Stewart Dr, Sunnyvale, CA, USA
- **Abstract:** Presentation on ULP GFSK PHY proposal
- **Purpose:** Providing direction towards a ULP PHY standard

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. **Release:** The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Ultra Low Power GFSK PHY proposal (presentation on draft proposal 15-13-0630-00-ULP-FSK-PHY-proposal)

Henk de Ruijter, Ping Xiong November, 2013

Outline:

- Introduction
- ULP-GFSK proposal
- Evaluation using TGD
- Abbreviations
- References
- Appendix

Introduction

Summary:

- This proposal, ULP-GFSK PHY, can be considered as an extension, adding low power options, to the MR-FSK PHY as defined in the 802.15.4g amendment [1]
- This will have the following benefits:
 - The similarities to the MR_FSK PHY will reduce development cost for implementers as well as chip vendors.
 - Piggyback on an existing and successful PHY standard will help to expedite industrial acceptance.

MR-FSK PHY for Energy efficient links for SUN:

PRO's:

- Constant envelop \rightarrow high efficiency PA
- Industry acceptance: ZigBee-NAN, Wi-SUN, ETSI

Short comings for ULP applications:

- Excessive overhead in PPDU for ULP applications
- Data rates not high enough for short transmissions

Addressed by this proposal

Power savings of this proposal:

Power is being saved by:

- Increase data rate to reduce the receiver and transmitter ON time.
- Double Data Rate mode (DDR) without re-sync required
- Additional power is being saved by reducing overhead:
 - 1 octet PHY header (vs 2 octet in MR-FSK PHY)
 - Optional 2 octet preamble (vs 4 octet in MR-FSK PHY)

ULP-GFSK PHY proposal

PPDU format:

Same as MR-FSK:

		Octet	ts
		2	Variable
Preamble	SFD	As defined in 18.1.1.3	PSDU
SHR		PHR	PHY payload

Figure 112—Format of the MR-FSK PPDU (without mode switch)

Preamble:

To reduce overhead (and save power):

- The minimum preamble for the ULP-GFSK PHY is reduced to 2 octet.
- The PHY PIB attribute "phyFSKPreambleLength" will be made available for ULP-FSK. The description in table 71 needs to reflect that and describe the related value range of 2 – 1000 for ULP-FSK.

Common with MR-FSK:

 The Preamble field shall contain *phyFSKPreambleLength* (as defined in 9.3, see 802.15.4g-2012 [1]) multiples of the 8-bit sequence "01010101" for filtered 2FSK.

SFD:

The SFD in ULP-GFSK is specified the same as for MR-FSK. See section 18.1.1.2 [1].

Table 131—MR-FSK PHY SFD values for filtered 2FSK

	SFD value for coded (PHR + PSDU) (b ₀ -b ₁₅)	SFD value for uncoded (PHR + PSDU) (b ₀ -b ₁₅)
phyMRFSKSFD = 0	0110 1111 0100 1110	1001 0000 0100 1110
phyMRFSKSFD = 1	0110 0011 0010 1101	0111 1010 0000 1110

Mandatory PHY Header (PHR):

The ULP-FSK PHY shall support the PHY Header as shown in Figure 114 [1].

Bit string index	0	1–2	3	4	5-15
Bit mapping	MS	R ₁ -R ₀	FCS	DW	L ₁₀ -L ₀
Field name	Mode Switch	Reserved	FCS Type	Data Whitening	Frame Length

Figure 114—Format of the PHR (without mode switching) for MR-FSK

- This PHY Header is also mandatory for MR-FSK
- In MR-FSK: "All reserved fields shall be set to zero upon transmission and shall be ignored upon reception"
- R1-R0 are used by the ULP-GFSK PHY

Resevered bits R1-R0:

R1-R0 are used in the ULP-FSK PHY as follows:

• R0 = SPH

Short PHR. When this bit is set while MS="0", the PHY Header (PHR) shown on the next slide shall be used.

• R1 = DDR

Double Data Rate. When this bit is set the data rate across the PSDU shall be doubled by applying 4GFSK modulation as appose to 2GFSK which is used during SHR and PHR. One symbol rate is maintained across the entire PPDU and the outer deviation of the 4GFSK is equal to the 2GFSK deviation to support seamless transition from PHR in 2GFSK to PSDU in 4GFSK.

Short PHR:

In addition to the mandatory PHR the Short PHR as shown below may be supported as well as the Mode Switching PHR as described in section 18.1.1.4 [1]

Bit string index	0	1	2	3-7
Bit mapping	MS	SPH	DDR	L_4 - L_0
Field name	Mode Switch	Short PHY Header	Double Data Rate	Frame Length

The short PHR supports packet lengths up to 32 Bytes.

Specification of MS/SPH and DDR:

мс	срц	חחח	DUV Uoodon	Madulation on DCDU	Frame	Data
M2	ЗРП	DDK	Phi neauer	Modulation on PSDU	Check Sum	Whitening
			Mandatory		Selected by	Selected by
0	0	0	PHR, see slide	Same as SHR and PHR	FCS bit in	DW bit in
			11		PHR	PHR
			Mode Switch		Selected by	Selected by
1	Х	X	PHR, see Figure	Same as SHR and PHR	FCS bit in	DW bit in
			115 [1]		PHR	PHR
	1	0	Short PHR, see	Sama as SUD and DUD	ECS = 16 bit	DW anablad
0	1	0	slide 13.	Same as SHK and PHK	FCS = 10 Dit	Dw enabled
	1	1	Short PHR, see	4GFSK, same symbol	ECS = 16 bit	DW anablad
0	1	I	slide 13	rate as SHR and PHR	FCS = 10 Dit	Dw enabled
			Mandatory	ACESK same symbol	Selected by	Selected by
0	0 0	1	PHR, see slide	401'SN, Salie Syllibol	FCS bit in	DW bit in
			11		PHR	PHR

Note: The DDR bit will be ignored when 4(G)FSK is used across the entire PPDU.

Modulation:

= also used in MR_FSK

ULP-FSK Operating Mode	Data Rate [kbps]	Channel Spacing [kHz]	Mod type	Mod- index/BT	20dB BW	Adjacent channel leakage (dB)	Sensitivity PER=1% NF=10dB [dBm]
4	4.8	12.5	2GFSK	1/0.5	10	-42	-115
5	9.6	12.5	4GFSK	0.333/0.5	8.8	-44	-109
6	9.6	25	2GFSK	1/0.5	20	-42	-112
7	19.2	25	4GFSK	0.333/0.5	18	-44	-106
8	50	200	2GFSK	1/0.5	104	-68	-105
9	100	200	4GFSK	0.333/0.5	92	-73	-99
10	150	400	2GFSK	1/0.5	312	-42	-100
11	300	400	4GFSK	0.333/0.5	276	-45	-94
12	400	1000	2GFSK	1/0.5	836	-41	-96
13	800	1000	4GFSK	0.333/0.5	740	-42	-90

Gaussian shapping:

Impulse response:

$$h(t) = B \cdot \sqrt{\frac{2\pi}{\ln(2)}} \cdot e^{-\frac{2\pi^2 B^2 t^2}{\ln(2)}}$$

Frequency response:

$$H(f) = e^{-\frac{f^2 \cdot \ln(2)}{2B^2}}$$

BT factor for ULP-GFSK:

$$BT_{s} = 0.5$$

Where Ts is the symbol period

ULP-GFSK in 12.5kHz channels:

Fraguonay hand		Operating	Operating
(MH ₇)	Parameter	mode	mode
(MITZ)		#4	#5
	Data rate (kbps)	4.8	9.6
169.400-169.475	Modulation	2GFSK	4GFSK
(Europe)	Modulation index	1	1/3
Channel spacing (kHz)		12.5	12.5
	Data rate (kbps)	4.8	9.6
450-470Modulation(US FCC Part 22/90)Modulation index		2GFSK	4GFSK
		1	1/3
	Channel spacing (kHz)	12.5	12.5
	Data rate (kbps)	4.8	9.6
896-901	Modulation	2GFSK	4GFSK
(US FCC Part 90)	Modulation index	1	1/3
	Channel spacing (kHz)	12.5	12.5
	Data rate (kbps)	4.8	9.6
901-902	901-902 Modulation		4GFSK
(US FCC Part 24)	Modulation index	1	1/3
	Channel spacing (kHz)	12.5	12.5

ULP-GFSK in 25kHz channels:

Frequency band (MHz)	Parameter	Operating mode #6	Operating mode #7
	Data rate (kbps)	9.6	19.2
169.400-169.475	Modulation	2GFSK	4GFSK
(Europe)	Modulation index	1	1/3
	Channel spacing (kHz)	25	25
	Data rate (kbps)	9.6	19.2
928-960	Modulation	2GFSK	4GFSK
(US FCC Part 22/24/90/101)	Modulation index	1	1/3
	Channel spacing (kHz)	25	25
	Data rate (kbps)	9.6	19.2
1427-1518	Modulation	2GFSK	4GFSK
(US FCC Part 90)	(US FCC Part 90) Modulation index		1/3
(Canada SRSP 301.4)	Channel spacing (kHz)	25	25

ULP-GFSK in 200 – 400 kHz channels (1):

Frequency band (MHz)	Parameter	Operating mode #8	Operating mode #9	Operating mode #10	Operating mode #11
	Data rate (kbps)	50	100	150	300
470-510	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(China)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400
	Data rate (kbps)	50	100	150	300
779-787	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(China)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400
	Data rate (kbps)	50	100	150	300
863-876 915-921	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(Europe)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400

<u>ULP-GFSK in 200 – 400 kHz channels (2):</u>

Frequency band (MHz)	Parameter	Operating mode #8	Operating mode #9	Operating mode #10	Operating mode #11
	Data rate (kbps)	50	100	150	300
902-928	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(US-ISM)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400
	Data rate (kbps)	50	100	150	300
917-923.5	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(Korea)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400
	Data rate (kbps)	50	100	100	200
920-928 950-958	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(Japan)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400
	Data rate (kbps)	50	100	150	300
2400-2483.5	Modulation	2GFSK	4GFSK	2GFSK	4GFSK
(Worldwide)	Modulation index	1	1/3	1	1/3
	Channel spacing (kHz)	200	200	400	400

ULP-GFSK in 1MHz channels (2):

Frequency band (MHz)	Parameter	Operating mode #12	Operating mode #13
	Data rate (kbps)	400	800
902-928	Modulation	2GFSK	4GFSK
(US-ISM)	Modulation index	1	1/3
	Channel spacing (kHz)	1000	1000
	Data rate (kbps)	400	800
917-923.5	Modulation	2GFSK	4GFSK
(Korea)	Modulation index	1	1/3
	Channel spacing (kHz)	1000	1000
	Data rate (kbps)	400	800
920-928 950-958	Modulation	2GFSK	4GFSK
(Japan)	Modulation index	1	1/3
	Channel spacing (kHz)	1000	1000
	Data rate (kbps)	400	800
2400-2483.5	Modulation	2GFSK	4GFSK
(Worldwide)	Modulation index	1	1/3
	Channel spacing (kHz)	1000	1000

Reference modulator block diagram [1]:

Radio frequency tolerance, same as in MR-FSK [1]:

18.1.5.3 Radio frequency tolerance

The single-sided clock frequency tolerance T at the transmitter, in ppm, shall be as follows:

 $T \leq \min \Bigl(\frac{T_0 \times R \times h \times F_0}{R_0 \times h_0 \times F}, 50 \text{ ppm} \Bigr)$

for all combinations of R, h, and F and for each mode supported by the device, where

- *R* is the symbol rate in ksymbol/s
- *h* is the modulation index
- *F* is the carrier frequency in MHz
- R_0 is 50 ksymbol/s
- h₀ is 1
- F₀ is 915 MHz
- T_0 is 30 ppm for modes in all bands, except at 2450 MHz for which the value of T_0 is 40 ppm

Leveraging MR-FSK [1]:

The ULP-GFSK PHY is using identical specifications for:

- Bit to Symbol Mapping
- Modulation quality
- Zero crossing tolerance
- Forward Error Correction (Convolution coding, K=4)
- Symbol interleaving
- Data Whitening
- Mode switching
- RF specification

Evaluation of ULP-GFSK PHY proposal

$$\frac{\text{PSDU efficiency:}}{\text{Definition used here: } \eta_{PSDU}} = \frac{T_{payload}}{T_{total}}$$

Where: T_{total} = total transmit on time

 $T_{payload}$ = time of payload transmission

PSDU	FCS #	η _P	SDU	
# of Bytes	of Bytes	MR- FSK	ULP- GFSK	
5	2	0.231	0.300	\rightarrow 23% power saving
32	2	0.725	0.783	\rightarrow 7.4% power saving

Notes: - ULP-GFSK PHY with 2 Byte preamble, Short PHR and 2 Byte FCS

- A 5 Byte PDSU might be an acknowledgement frame

Double Data Rate:

PPDU example with 18 Byte PSDU:

DDR bit not set:

DDR bit set:

Eye pattern - zero crossing and deviation tolerance spec:

Same as MR-FSK

PSD of 4GFSK@h=1/3 is very similar to 2GFSK@h=1

Submission

Spectral efficiency:

Definition:

$$\eta_{SA} = \frac{data_rate}{BW_{-20dB}}$$

2GFSK
$$\rightarrow \eta_{SA} = 0.48$$
 (bits/s/Hz)

4GFSK $\rightarrow \eta_{SA} = 1.09$ (bits/s/Hz)

Allows for short packets when BW constrained

PSD of 4GFSK@h=1/3 compared to MSK:

Note: Both MSK and OQPSK(half sine shaped) have significant spectral leakage

20 dB signal Bandwidth:

ULP-FSK Operating Mode	Data Rate [kbps]	Channel Spacing [kHz]	Mod type	Mod- index/BT	20dB BW (kHz)	Adjacent channel leakage (dB)	Sensitivity PER=1% NF=10dB [dBm]
4	4.8	12.5	2GFSK	1/0.5	10	-42	-115
5	9.6	12.5	4GFSK	0.333/0.5	8.8	-44	-109
6	9.6	25	2GFSK	1/0.5	20	-42	-112
7	19.2	25	4GFSK	0.333/0.5	18	-44	-106
8	50	200	2GFSK	1/0.5	104	-68	-105
9	100	200	4GFSK	0.333/0.5	92	-73	-99
10	150	400	2GFSK	1/0.5	312	-42	-100
11	300	400	4GFSK	0.333/0.5	276	-45	-94
12	400	1000	2GFSK	1/0.5	836	-41	-96
13	800	1000	4GFSK	0.333/0.5	740	-42	-90

Adjacent Channel Leakage:

ULP-FSK Operating Mode	Data Rate [kbps]	Channel Spacing [kHz]	Mod type	Mod- index/BT	20dB BW (kHz)	Adjacent channel leakage (dB)	Sensitivity PER=1% NF=10dB [dBm]
4	4.8	12.5	2GFSK	1/0.5	10	-42	-115
5	9.6	12.5	4GFSK	0.333/0.5	8.8	-44	-109
6	9.6	25	2GFSK	1/0.5	20	-42	-112
7	19.2	25	4GFSK	0.333/0.5	18	-44	-106
8	50	200	2GFSK	1/0.5	104	-68	-105
9	100	200	4GFSK	0.333/0.5	92	-73	-99
10	150	400	2GFSK	1/0.5	312	-42	-100
11	300	400	4GFSK	0.333/0.5	276	-45	-94
12	400	1000	2GFSK	1/0.5	836	-41	-96
13	800	1000	4GFSK	0.333/0.5	740	-42	-90

Eb/No in AWGN:

RX sensitivity ((non-coherent	demodulator,	20B PSDU):

ULP-FSK Operating Mode	Data Rate [kbps]	Channel Spacing [kHz]	Mod type	Mod- index/BT	20dB BW (kHz)	Adjacent channel leakage (dB)	Sensitivity PER=1% NF=10dB [dBm]
4	4.8	12.5	2GFSK	1/0.5	10	-42	-115
5	9.6	12.5	4GFSK	0.333/0.5	8.8	-44	-109
6	9.6	25	2GFSK	1/0.5	20	-42	-112
7	19.2	25	4GFSK	0.333/0.5	18	-44	-106
8	50	200	2GFSK	1/0.5	104	-68	-105
9	100	200	4GFSK	0.333/0.5	92	-73	-99
10	150	400	2GFSK	1/0.5	312	-42	-100
11	300	400	4GFSK	0.333/0.5	276	-45	-94
12	400	1000	2GFSK	1/0.5	836	-41	-96
13	800	1000	4GFSK	0.333/0.5	740	-42	-90

Line of Sight (LOS) path loss @ 10 meters [2]:

	d=	10	meter								
	Ptx=	-5	dBm								
Ant §	gain TX=	-6	dB								
Ant g	gain RX=	-6	dB								
						Llos @	Llos @		Ant gain	TX	RX
F	hb	hm	lambda	Rbp	Lbp	d>Rbp	d <rbp< td=""><td>Llos</td><td>TX & RX</td><td>power</td><td>power</td></rbp<>	Llos	TX & RX	power	power
MHz	meter	meter	meter	meter	dB	dB	dB	final	dB	dBm	dBm
169	2	2	1.78	9.0	30.1	37.9	37.0	37.9	-12	-5	-54.9
460	2	2	0.65	24.5	47.5	37.9	45.7	45.7	-12	-5	-62.7
780	2	2	0.38	41.6	56.6	37.9	50.3	50.3	-12	-5	-67.3
870	2	2	0.34	46.4	58.5	37.9	51.2	51.2	-12	-5	-68.2
915	2	2	0.33	48.8	59.4	37.9	51.6	51.6	-12	-5	-68.6
2450	2	2	0.12	130.7	76.5	37.9	60.2	60.2	-12	-5	-77.2

ITU indoor channel model [2]:

Power Delay Profile:

Тар	Relative delay	Average power	Doppler
	(ns)	(dB)	spectrum
1	0	0	Flat
2	50	-3	Flat
3	110	-10	Flat
4	170	-18	Flat
5	290	-26	Flat
6	310	-32	Flat

Simulation ITU indoor channel model @ 900MHz:

Submission

ITU outdoor to indoor channel model and pedestrian [2]: Power Delay Profile:

Tan	Relative delay	Average power	Doppler spectrum	
Тар	(ns)	(dB)		
1	0	0	Classic	
2	110	-9.7	Classic	
3	190	-19.2	Classic	
4	410	-22.8	Classic	

Simulation ITU indoor channel model @ 900MHz:

Link Budget @ 915MHz:

Parameter	Signal power & Gain	
TX power	-5 dBm	
TX antenna gain	-6 dBi	
Path loss at 10m	-51.6 dB	
Receiver antenna gain	-6 dBi	
Power at RX input	-68.6 dBm	
Receiver noise figure	10 dB	
Eb/No under fading conditions –		
non coherent demod	-43 QB	
RX sensitivity* at OM 8 (50kbps)	-74 dBm	
Receive power margin	5.4 dB	

*RX sensitivity = -174dBm + NF + Eb/No + 10log(Rb)

Receiver power consumption (1):

Power consumption in receiver depends on:

- Noise Figure
- Selectivity and blocking performance
- Demodulator sensitivity

E.g. the adjacent channel selectivity can be calculated as follows:

$$AdjCR = 10 * \log_{10} \left(10^{\frac{(PN_{AdjCh} + SNR)}{10}} + 10^{\frac{(CF_{AdjCh} + SNR)}{10}} \right)$$

Where:

PN_{AdjCh} is the LO phase noise power integrated over the adjacent channel in dBc
CF_{AdjCh} is the suppression of the adjacent channel relative to the pass band in dB
SNR is the signal to noise ratio required at the demodulator input for the specified PER in dB

Receiver power consumption (2):

Based on silicon available today:

- PLL tuning system ~ 11mW
- LNA/Mixer + demod ~ 7mW
- Total consumed power: ~18mW
- Higher performance than needed for ULP applications:
 - NF = 8dB, ULP TGD specifies 10dB
 - Adjacent Channel selectivity = -56dB

Down scaled performance is likely to meet the TG4q requirement of 15mW.

Transmitter power consumption:

Power consumption in transmitter depends on:

- PA efficiency
- Spurious emission requirements
 - Phase Noise on RF signal

From existing silicon:

- PA power consumption < 1mW at -5dBm RF power
- RF carrier generation ~12mW
 - For high performance / low phase noise carrier
- Already lower than TG4q requirement (15mW)

Conclusions:

- ULP-GFSK file meets range requirements including small scale fading @ 50kbps
- Power savings by
 - Reduction in overhead in Preamble and PHR
 - Higher data rates (shorter TX/RX on time)
 - Double Data Rate without re-sync
- Meeting 4q PAR requirements (<15mW)
- Clean spectrum by employing Gaussian filter

Abbreviations:

- FCS Frame Check Sequence
- FEC Forward Error Correction
- GFSK Gaussian Frequency Shift Keying
- OM Operating Mode
- PHR PHY header
- PPDU PHY Protocol Data Unit
- PSDU PHY Service Data Unit
- SFD Synchronization Frame Delimiter
- SHR Synchronization header
- SUN Smart Utility Network
- ULP Ultra Low Power

REFERENCES:

[1] IEEE802.15.4g-2012

[2] 15-13-0329-01-004q-channel-models-for-IEEE-802-15-4q

[3] 15-13-0341-03-004q-tg4q-tgd-draft

[4] IEEE802.15.4-2011

[5] 15-13-0630-01-ULP-FSK-PHY-proposal.pdf

APPENDIX A – Frame structures – 802.15.4-2011:

APPENDIX B -20dB signal BW definition:

Use the following spectrum analyzer settings:

- Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- RBW ³ 1% of the 20 dB bandwidth
- VBW ³ RBW
- Sweep = auto
- Detector function = peak
- Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.