#### Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Samsung's Physical Layer Proposal
Date Submitted: Nov, 2013
Source: Kiran Bynam, Young-Jun Hong, Jinesh Nair, Chandrashekhar Thejaswi, Sujit Jos, Changsoon Park, Youngsoo Kim, Chunhui Zhu, Ashutosh Gore, Jongae Park, Manoj Choudhary

E-Mail: kiran.bynam@samsung.com

Abstract: Samsung's PHY proposal as response to IEEE 802.15.4q CFP

**Purpose:** Response to Call for Proposals

**Notice:** This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

**Release:** The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

## Objective

- Proposal for Physical Layer amendment as response to CFP of IEEE 8021.5.4q TG
  - With power consumption less than 15 mW
  - With receiver sensitivity less than -85 dBm

□ To operate in both coherent/non-coherent mode

- With Rx power as low as 2 mW in non-coherent mode
- With sensivity below -90 dBm in coherent mode

## **PPDU** Format

- Quite Synonymous with IEEE 802.15.4
  - Header is protected with 4 bit HCS
  - 4 bits for indicating modulation format

| Header Bits | PHY Parameter                         |
|-------------|---------------------------------------|
| 0-7         | Length of<br>Payload (0-127<br>bytes) |
| 8-11        | Modulation<br>Format                  |



## Transmitter Block Diagram



## FEC-BCH codes

• BCH (63,51) codes are employed for error correction capability of 2 bits





FEC Encoder

• Any ' $\ell$  '-bit shortened code BCH (63 -  $\ell$ , 51 -  $\ell$ ) codes can be obtained from above encoder with error correction capability of 2

## Rate-Matching with shortened BCH codes: $FEC - BCH(63 - \ell, 51 - \ell)$

- $\checkmark$  Incurs lesser overhead when compared to naïve zero-padding.
- ✓ Improves the performance of the FEC, since more bits can be corrected for a given packet length, and also due to the increased energy/coded bit.
- ✓ Same encoder/decoder pair is used for all combinations (all values of  $1 \le \ell < 51$ ).

Total no. of message blocks:

Length of the new message block:

Shortening length of the code: Length of the new encoded block: Length of the new bit-stream: Required no. of zeros for insertion:

$$M_B = \left[\frac{B}{51}\right]; B - \text{packet length in bits.}$$

$$K = \left[\frac{B}{M_B}\right];$$

$$\ell = 51 - K$$

$$N = 63 - \ell$$

$$B_{new} = M_B K$$

$$Z = B_{new} - B$$

## Interleaving (1/2)

• Allowed depth of interleaving, d = 2,3,4,5

### **Interleaving Procedure**

- $\checkmark$  Collect *d* blocks of *N*-length codewords
- ✓ Write them row-wise in a  $d \times N$  dimensional array.
- $\checkmark$  Read the array column-wise and output the data sequentially.

#### **Ex: Interleaving for depth d=4**



## Interleaving (2/2)

- $M_B \rightarrow$  number of code words after FEC encoding
- $d \rightarrow$  depth of the interleaver

$$Q = \left\lfloor \frac{M_B}{d} \right\rfloor$$
$$R = mod (M_B, d)$$

- Apply depth 'd' interleaving for Q blocks
- Apply depth 'R' interleaving for last R blocks

## Modulation

- Variable Spreading factor **Ternary OOK** modulation schemes
- Two types of spreading codes
  - Orthogonal code: Perfect Orthogonal sequences to map symbols '1' and '0'.
  - **Pseudorandom code :** Set of circularly shifted sequences to map 2<sup>k</sup> symbols

| М | L          | Nomenclature | Orthogonal Sequences (symbols: '1' / '0') |
|---|------------|--------------|-------------------------------------------|
|   | 1 1/1-TOOK |              | 1/0                                       |
| 1 | 2          | 1/2-TOOK     | 1 0/ 0 -1                                 |
| I | 1 4        | 1/4 –TOOK    | 1 0 0 1/0 -1 -1 0                         |
|   | 8          | 1/8 –TOOK    | 1 0 -1 0 0 -1 0 1 / 0 -1 0 1 1 0 -1 0     |

| М | L  | Nomenclature |         |        |        |        | Bas    | ic P   | seud    | dora   | ndo      | m Se    | eque   | nce     |        |        |        |        |
|---|----|--------------|---------|--------|--------|--------|--------|--------|---------|--------|----------|---------|--------|---------|--------|--------|--------|--------|
| 2 | 4  | 2/4-TOOK     |         |        |        |        |        |        | 1       | 0      | 0        | 0       |        |         |        |        |        |        |
| 3 | 8  | 3/8-TOOK     |         |        |        |        | 0      | 0      | 0       | 1      | -1       | 0       | 1      | 1       |        |        |        |        |
| 4 | 16 | 4/16-TOOK    | 1       | -1     | 0      | 0      | 0      | 0      | 1       | 0      | -1       | 0       | 0      | 1       | 1      | 0      | 1      | 1      |
| 5 | 32 | 5/32-TOOK    | -1<br>0 | 0<br>0 | 0<br>0 | 1<br>1 | 0<br>0 | 1<br>0 | -1<br>1 | 0<br>1 | -1<br>-1 | -1<br>0 | 1<br>0 | -1<br>0 | 0<br>0 | 1<br>0 | 0<br>1 | 1<br>1 |

## **Random Sequence Inverter**



Nov 2013

## Preamble Structure



| Preamble<br>Def | Spreading<br>Factor (SF) | Base Preamble Sequence                                                    | Number of<br>Repetition<br>(N <sub>rep</sub> ) |
|-----------------|--------------------------|---------------------------------------------------------------------------|------------------------------------------------|
| P1              | 2                        | -1 0 -1 0 1 0 1 0 -1 0 -1 0 1 0 -1 0<br>1 0 1 0 1 0 -1 0 -                | 2                                              |
| P2              | 4                        | 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 -1 -<br>1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 -1 | 4                                              |
| P3              | 8                        | 1 0 -1 0 0 -1 0 -1 1 0 1 0 0 -1 0 1<br>1 0 1 0 0 -1 0 1 -1 0 1 0 0 1 0 1  | 8                                              |
| P4              | 16                       | -1 0 -1 0 -1 0 -1 0 0 -1 0 1 0 1 0 -1<br>-1 0 1 0 -1 0 1 0 0 1 0 -1 0 -   | 16                                             |

## Pulse Shaping

- Gaussian Pulse Shape with BT = 0.3
- Symbol Time  $T = 1\mu s$ .



Nov 2013

## Data Rates-Proposal

| Data<br>Rate<br>Number | Code used | Modulati<br>on Duty<br>Cycle | Inter-<br>leaver<br>depth<br>(d) | M<br>(bits per<br>Symbol) | L (chips<br>Per<br>Symbol) | Data<br>Rate in<br>2.4<br>GHz<br>(kbps) | Data<br>Rate in<br>900 MHz<br>(kbps) | Preambl<br>e<br>used | SFD<br>Spreading<br>used |
|------------------------|-----------|------------------------------|----------------------------------|---------------------------|----------------------------|-----------------------------------------|--------------------------------------|----------------------|--------------------------|
| D1                     | 1/1-TOOK  | 0.50                         | 1                                | 1                         | 1                          | 809.5                                   | 485.7                                | P2                   | S2                       |
| D2                     | 2/4-TOOK  | 0.25                         | 2                                | 2                         | 4                          | 404.8                                   | 242.8                                | P2                   | S2                       |
| D3                     | 3/8-TOOK  | 0.50                         | 3                                | 3                         | 8                          | 303.6                                   | 182.1                                | P3                   | S3                       |
| D4                     | 1/4-TOOK  | 0.50                         | 1                                | 1                         | 4                          | 202.4                                   | 121.4                                | P3                   | S3                       |
| D5                     | 4/16-TOOK | 0.50                         | 4                                | 4                         | 16                         | 202.4                                   | 121.4                                | P3                   | S3                       |
| D6                     | 5/32-TOOK | 0.50                         | 5                                | 5                         | 32                         | 126.5                                   | 75.9                                 | P4                   | S4                       |
| D7                     | 1/8-TOOK  | 0.50                         | 1                                | 1                         | 8                          | 101.2                                   | 60.7                                 | P4                   | S4                       |

- Chip rate used = 1MHz for 2.4 GHz, 600 KHz for 900 MHz band
- FEC code specified : BCH(63,51)

| Data Rate Number                       | D1    | D2    | D3    | D4    | D5    | D6    | D7    |
|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Payload efficiency for 40 bytes (% ge) | 69.69 | 82.14 | 83.63 | 82.14 | 82.14 | 78.63 | 82.14 |

## Band Plan

- Band plan similar to IEEE 802.15.4 for 2.4 GHz and 900 MHz
- 2400 MHz

$$F_c = 2405 + 5 * k, \dots k = 0, 1, 2 \dots 15$$

• 900 MHz

$$F_c = 906 + 2 * k, \dots k = 0, 1, 2 \dots 9$$

## Power Spectral Density



| Power Leakage Ratio             | Value  |
|---------------------------------|--------|
| Adjacent channel leakage ratio  | -69 dB |
| Alternate channel leakage ratio | -72 dB |

## **Receiver Architecture**

- Super Regeneration based amplification used for OOK demodulation and detection
- 60 dB super regenerative gain
- Baseband processing involves
  - Synchronization
  - Demodulation and Detection



Nov 2013

## Baseband Processing (1/2)



#### Timing Synchronization

Frame timing estimate  $\hat{t}$ 

$$\hat{\tau} = \underset{j}{\operatorname{argmax}} \sum_{i=1}^{N_p} x[i]y[i+j]$$

 $[x[1], ..., x[N_p]]$  – preamble template at Rx  $\{y[1], y[2] ..., \}$  – baseband samples at Rx

#### Demodulation

Symbol estimate at epoch n,  $\hat{m}_n$ 

$$\widehat{m}_n = \operatorname*{argmax}_{m \in \{0, \dots, M-1\}} \mathbf{s}_m^T \mathbf{y}_n$$

 $\mathbf{y}_n = [y_n[1], ..., y_n[L]] - rx$  samples corresponding to symbol at epoch n $\mathbf{s}_i^T = [s_i[1], ..., s_i[L]]$  - spreading sequence corresponding to symbol *i*.

## Packet Error Rate in AWGN



□ 20 bytes of packet length assumed for PER measurements

## Synchronization Results



# BER Results for coherent mode in AWGN



• BER of 4e-5 is equivalent to PER of 1% @ 20 bytes of packet length

## Link Budget for AWGN

| Donomotor                                   | Value for D7    | Value for D5 | Value for D1 |  |  |  |
|---------------------------------------------|-----------------|--------------|--------------|--|--|--|
| rarameter                                   | (1/8-TOOK)      | (4/16-TOOK)  | (1/1-TOOK)   |  |  |  |
| Tra                                         | nsmitter Budget |              |              |  |  |  |
| Payload Data Rate (R <sub>b</sub> ) in kbps | 101.2           | 202.4        | 809.5        |  |  |  |
| Distance (d) in m                           | 30              | 30           | 30           |  |  |  |
| Bandwidth (B) in MHz                        | 1               | 1            | 1            |  |  |  |
| Tx Antenna Gain (G <sub>T</sub> ) in dB     | 0               | 0            | 0            |  |  |  |
| Center Frequency (F <sub>C</sub> ) in MHz   | 2450            | 2450         | 2450         |  |  |  |
| Average Transmit Power $(P_t)$ in dBm       | -5              | -5           | -5           |  |  |  |
| R                                           | eceiver Budget  |              |              |  |  |  |
| Path Loss at distance d m                   | 69.77           | 69.77        | 69.77        |  |  |  |
| Rx Antenna Gain (G <sub>R</sub> ) in dB     | 0               | 0            | 0            |  |  |  |
| Received Power $(P_{rx})$ in dBm            | -74.77          | -74.77       | -74.77       |  |  |  |
| Average Noise Per bit (N) in dBm            | -123.94         | -120.93      | -114.91      |  |  |  |
| System Noise Figure (NF) in dB              | 10              | 10           | 10           |  |  |  |
| Minimum Eb/No Required in dB                | 14              | 14.5         | 16           |  |  |  |
| Implementation Loss (I) in dB               | 3               | 3            | 3            |  |  |  |
| System Performance                          |                 |              |              |  |  |  |
| Link Margin (LI) in dB                      | 22.17           | 18.66        | 11.14        |  |  |  |
| Receiver Sensitivity (S) in dBm             | -96.94          | -93.43       | -85.91       |  |  |  |

## Link Budget for Indoor Channels

| Parameter                                   | Value for D7<br>(1/8- TOOK) | Value for D5<br>(4/16-TOOK ) | Value for D1<br>(1/1-TOOK) |  |  |
|---------------------------------------------|-----------------------------|------------------------------|----------------------------|--|--|
| Tra                                         | ansmitter Budget            |                              |                            |  |  |
| Payload Data Rate (R <sub>b</sub> ) in kbps | 101.2                       | 202.4                        | 809.5                      |  |  |
| Distance (d) in m                           | 10                          | 10                           | 10                         |  |  |
| Bandwidth (B) in MHz                        | 1                           | 1                            | 1                          |  |  |
| Tx Antenna Gain (G <sub>T</sub> ) in dB     | 0                           | 0                            | 0                          |  |  |
| Center Frequency (F <sub>C</sub> ) in MHz   | 2450                        | 2450                         | 2450                       |  |  |
| Average Transmit Power $(P_t)$ in dBm       | -5                          | -5                           | -5                         |  |  |
| R                                           | leceiver Budget             |                              |                            |  |  |
| Path Loss at distance d m                   | 69.6                        | 69.6                         | 69.6                       |  |  |
| Rx Antenna Gain (G <sub>R</sub> ) in dB     | 0                           | 0                            | 0                          |  |  |
| Received Power $(P_{rx})$ in dBm            | -74.6                       | -74.6                        | -74.6                      |  |  |
| Average Noise Per bit (N) in dBm            | -123.94                     | -120.93                      | -114.91                    |  |  |
| System Noise Figure (NF) in dB              | 10                          | 10                           | 10                         |  |  |
| Minimum Eb/No Required in dB                | 14                          | 14.5                         | 16                         |  |  |
| Implementation Loss (I) in dB               | 3                           | 3                            | 3                          |  |  |
| System Performance                          |                             |                              |                            |  |  |
| Link Margin (LI) in dB                      | 22.34                       | 18.83                        | 11.31                      |  |  |
| Receiver Sensitivity (S) in dBm             | -96.94                      | -93.43                       | -85.91                     |  |  |

## **ACI** Performance



| Parameter                   | Value |
|-----------------------------|-------|
| Adjacent Channel Rejection  | 13    |
| Alternate Channel Rejection | 20    |

|                           | Power CC            | DIIS |          |
|---------------------------|---------------------|------|----------|
| Tx<br>Component           | Power (µW) @ -5 dBm |      | Со       |
| Baseband                  | 1000                |      | Lľ       |
| VCO                       | 322                 |      | E<br>Aſ  |
| Power Amplifier           | 2982                |      | B        |
| PLL + Freq<br>Synthesizer | 1000                |      | PL<br>Sy |
| Total                     | 5304                |      |          |

## **Power Consumption**

| Rx<br>Component           | Power (µW) |
|---------------------------|------------|
| LNA+SRO                   | 638        |
| ED+VGA                    | 33         |
| ADC (8 bit)               | 7.5        |
| Baseband                  | 1500       |
| PLL + Freq<br>Synthesizer | 1000       |
| Total                     | 3178.5     |

- Total Power consumption less than 5 mW for Receiver
- Total Power consumption of transmitter less than 7 mW @ 5 dBm EIRP
- Meets the 15.4q PAR requirement of less than 15 mW in transmit and receive modes

## **Targeted Area of Applications**

## Reference Powers for Transmitter and Receiver Circuits

- Transmitter Power Reference: For a 0 dBm Transmit power, and  $\eta_T = 0.2$ , The transmitter power is 5 mW
- Receiver Power Reference 1: For a median receiver current of 20mA from vendor chipsets the power is  $20mA \times 3V \approx 60mW$
- Receiver Power Reference 2: For a minimum receiver current of 3.5mA from vendor chipsets the power is  $3.5\text{mA} \times 3\text{V} \approx 10\text{mW}$

#### 2.4 GHz IEEE 802.15.4 Commercial Chipsets

| Chipset  | Tx Current      | Rx. Current  |
|----------|-----------------|--------------|
| Vendor6  | 21 mA (0 dbm)   | 21 mA        |
| Vendor7  | 19.6 mA (0 dbm) | 19 mA        |
| Vendor10 | 17 mA (+3 dbm)  | 16 mA        |
| Vendor3  | 30 mA (+3 dbm)  | 25 mA        |
| Vendor13 | 6 mA (0 dbm)    | 4 mA         |
| Vendor5  | 20 mA (0 dbm)   | 22 mA        |
| Vendor12 | 15 mA (2.5 dbm) | 17.5 mA      |
| Vendor2  | 30 mA (0 dbm)   | 37 <u>mA</u> |
| Vendor8  | 19 mA           | 20 <u>mA</u> |
| Vendor9  | 18.9 mA         | 17.4 mA      |
| Vendor11 | 17 mA           | 13 mA        |
| Vendor1  | 36 <u>mA</u>    | 36 <u>mA</u> |
| Vendor4  | 29 mA           | 24 mA        |
| Vendor14 | 3.6 mA          | 3.5 mA       |

Ref [4]: IEEE902.15-12-0383-0000-4q "A Limitation of Coin Cell Batteries" Shahriar Emami

#### Nov 2013

## Efficiency of Transceiver vs Distance

- For distances of below ~30 m, the reference transmitter and receiver system powers are higher than  $P_t$
- For  $\eta_T = 0.5$ , for distances below ~ 20 m, the transmitter and receiver system powers are higher than  $P_{tx}$
- For shorter distances the Transmitter powers and Receiver powers become more important than the Transmit signal power (EIRP)
- With this protocol, we could support applications with range up to 30 m with greater energy efficiency due to Ultra Low Receiver Power



Transmit Power Required  $P_t$  for various distances in Indoor LOS, and with Free space path loss model with n=3 and n=4



Corresp Transmitter Power  $P_{tx}$  for various distances in Indoor LOS

# Applications with Low Rx Power



- Collaborating sensor nodes
- Sensors in some applications need continuous sensing
- Power Consumed by the Receiver is *also* important







## TGD Compliance Sheet

| TGD Metric                                   | Evaluation                                 |
|----------------------------------------------|--------------------------------------------|
| Lowest Mandatory Data Rate                   | 101.2 kbps                                 |
| Range in AWGN Channel                        | Link Margin of 22 dB @ 30 m                |
| Bit Rate                                     | 101.2 to 809.5 kbps                        |
| Range in channel model proposed              | Link Margin of 22 dB @ 10 m                |
| ACI/ALCI Rejection                           | 13/20 dB                                   |
| ACPR/ALCPR                                   | -69/-72 dB                                 |
| Band Plan and co-existence                   | Band plan proposed for 2.4 GHz and 900 MHz |
| Evaluation of packet efficiency for 40 bytes | Done                                       |
| Power Consumption for Receiver               | 3.2 mW                                     |
| Power Consumption for transmitter            | 5.3 mW                                     |

## Summary

- Proposal for air interface for Low range applications requiring ultra low power consumption
- Receiver Power of non-coherent mode less than 5 mw
- Demonstrated the positive link margin for 30 m range in awgn, 10 m range in indoor channels for all data rates proposed
- □ Coherent sensitivity of much less than -90 dBm
- □ Range of data rates 0.1 to 1 Mbps