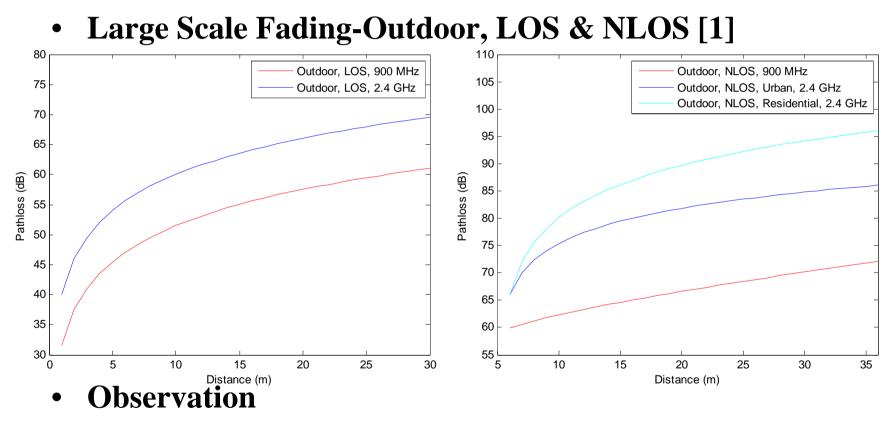
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Transmission power control for ULP]
Date Submitted: [November 4th, 2013]
Source: [Weidong Gao, Jingwen Liu, Zhe Chen]
Company [Potevio]
Address [No.6 Haidian North Second Street, Haidian District, Beijing 100080, China]
Voice: [+86-10-82484642]
FAX: [+86-10-62683797]
E-Mail: [gaoweidong@cpit.com.cn]
Re: [In response to TG4q Call for proposals]
Abstract: [This contribution proposes power control to reduce transmission power.]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE

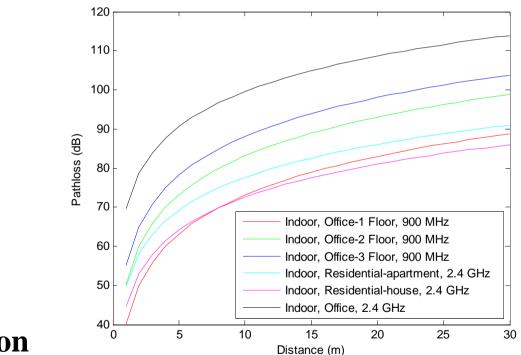
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.


Transmission power control for ULP

November, 2013 Weidong Gao, Potevio

Abstract

• This contribution proposes transmission power control for TG4q ULP.


Review of TG4q Channel Models

There is distinct variation for outdoor large scale fading within 0-30m range .

Review of TG4q Channel Models

• Large Scale Fading-Indoor [1]

- Observation
 - There is distinct variation for indoor large scale fading within 0-30m range .

Review of TG4q Channel Models

- **Coherence time [2]:** $T_c \simeq \frac{0.423}{f_d} = \frac{0.423}{vf/c}$
 - 170ms (900 MHz), 63ms (2.4 GHz)
- Packet interval

 $T = T_{Data} + T_{Ack} + 2IFS + 2\tau$

- Data transmission time: 5.44 ms (170 Byte, 250 kb/s)
- Ack frame transmission time: 0.16 ms (5 Byte, 250 kb/s)
- Interframe space: 0.64 ms (O-QPSK, 62.5 ksymbol/s)
- Propagation time: 0.0001 ms (30 m)

• Observation

 At most 24 (900 MHz), 9 (2.4 GHz) data frames can be accommodated within single coherence time

Review of TG4q ULP applications [3]

Market Sector	Data Rate (Kbps)	Range (m)	Number of Nodes	Reliability	Form Factor	Duty Cycle	Payload Size	Mobility	Battery Life
Smart Utility (Gas/Water)	100	30	1000s	High		Low	Small	No	Years
Building Automation	1000	30	100s	High	S, M	Mid	Mid	No	Years
Medical / Health Care	1000	10	10s	High	Small	High	Small-Mid	Yes	Days-Mos
Retail Service	100	30	100s	High	Small	Mid-High	Mid-Large	Yes	Years
Telecom Service	1000	10	10s	High	Small	High	Mid-Large	Yes	Days
Industrial Monitoring	100	100	100s	High		Mid-High	Small-Mid	No	Years
Environment Monitoring	100	100	100s	High		Low	Small	No	Years
Inventory Tracking	100	100	1000s	High	Small	Low	Small-Mid	Yes	Years
Energy-Harvesting Sensor	100	10	10s	Low		Low	Small		Years
Smart Active Label	100	30	1000s	High	Small	Low	Small	Yes	Days-Mos
Shelf Label	1000	30	1000s	High		Low	Mid-Large	No	Months

Submission

Demand for Power Control

- Strong demand
 - Applications (3) : Medical / Health Care , Telecom Service, Energy-Harvesting Sensor
 - Characteristics: (Mobility & High duty cycle & Short battery Life) || Energy-Harvesting

• Medium demand

- Applications (4) : Retail Service, Industrial Monitoring, Inventory Tracking, Smart Active Label
- Characteristics: Mobility || High duty cycle || Short battery Life

• Weak demand

- Applications (4) : Smart Utility (Gas/Water), Building Automation, Environment Monitoring, Shelf Label
- Characteristics: Fixed & Low duty cycle & Long battery Life

Usefulness of Power Control

- Power Control can be used to
 - Compensate for large scale fading variety caused by distance variation
 - Compensate for slow fading from shadowing effect
 - Compensate for time-selective fading due to mobility

Potential Power Control schemes

- Open loop Power Control
 - A device estimates its transmission power levels according to the received signal strength from the communicating device
 - Merits: Simple, low complexity, less overhead
 - Drawbacks: Not suitable for one-way communication

Close loop Power Control

- A device resets its transmission power after receiving Transmission
 Power Control Command (TPC) from the communicating device
- Merits: Accurate
- Drawbacks: Larger latency, more overhead
- Requirement of Power Control for ULP
 - Simple, light-weight, less overhead (e.g piggybacked with Ack)

Conclusion

- Large scale fading of TG4q channel exhibits significant volatility within 3-30m range
- Multiple data frames can be accommodated within single coherence time
- Transmission Power Control is needed for a various of applications, i.e. Medical / Health Care, Telecom Service and Energy-Harvesting Sensor
- Propose TG4q to introduce transmission Power Control scheme and further study the details

Reference

[1] 15-13-0329-01-004q-channel-models-for-ieee-802-15-4q-draft
[2] T. Rappaport, "Wireless Communications: Principles and Practice" Pearson Education, 2nd Edition, 2002
[3] 15-13-0478-00-004q-ulp-application-summary