SmartBAN introduction

ETSI TC Smart BAN
July 15, 2013
The need and focus

- As the world’s population ages, the need for solutions, such as eHealth, that help people live longer at home and with a better quality of life increases.
- eHealth is one such solution. It is a broad topic with many facets. Solutions may be used at home, in the hospital or on the move.
- For the purposes of this presentation, the focus is on Body Area Networks (BAN) in support of “Health” related applications and services such as:
 - Health and wellness monitoring
 - Personalised Medicine
 - Assisted living (including social networks)
 - Sports training and rehabilitation
 - Safety / emergency

From devices to applications and services
Body Area Network

- Definition of a Body Area Network (BAN)
 - BAN consists of one or more body sensor devices connected in a short range communication network about the body.
 - Wireless body sensor devices may be wearable or implantable.
 - Connectivity within a BAN may be wired, wireless or a combination.
 - Devices may include: biomedical sensors, watches, handsets, hearing aids, necklaces…
 - A BAN may be a stand-alone solution or part of a larger system connected via a wide area network (e.g. the Internet)
- BAN may be viewed as a kind of access network. Communication may be machine-to-machine (M2M), person-to-machine, person-to-person…
- Potential applications include Health, Wellness, Medical, safety, gaming and more.

Our focus is on Wireless BAN for «Health» applications
Health BAN applications

Bio-Medical (with average data rate)
- Blood pressure (0.01-0.1 kbps)
- SpO2, CO2, pH (0.01 – 0.1 kbps)
- Glucose sensor (0.01 – 0.1 kbps)
- Temperature (0.01 – 0.1 kbps)
- EEG (10-100 kbps)
- ECG (2-8kbps/lead)
- Respiration, fall detection...

Sports performance
- Distance
- Speed
- Posture (Body Position)
- Sports training aid

Not only measurements, but increasingly towards continuous updates of data for tracking performance and conditions as well as better diagnosis
Market growth projections for wireless enabled monitoring devices in kilo units (KU)

Exponential growth on the device side. Similar growth on the application-service side, perhaps especially given continuous monitoring systems.
Snapshot of applications

<table>
<thead>
<tr>
<th>Category</th>
<th>Application</th>
<th>Metrics, sensors, actuators</th>
<th>Nature of devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assisted living</td>
<td>Alzheimer's / dementia</td>
<td>Localization of persons, memory aids</td>
<td>Wearable</td>
</tr>
<tr>
<td>Assisted living</td>
<td>Assistance</td>
<td>Remote personal assistant, Social Network support group</td>
<td>Wearable, portable</td>
</tr>
<tr>
<td>Assisted living</td>
<td>Fall alarm</td>
<td>Fall detection and alarm</td>
<td>Wearable</td>
</tr>
<tr>
<td>Assisted living</td>
<td>Medication compliance</td>
<td>Dosage, vital signs monitoring, reminders</td>
<td>Dispenser, wearable sensors</td>
</tr>
<tr>
<td>Fitness</td>
<td>Activity and metabolism</td>
<td>Activity detection (e.g. accelerometer), heat flux (calories)</td>
<td>Wearable, portable</td>
</tr>
<tr>
<td>Fitness</td>
<td>Weight and body fat</td>
<td>Weight and calorie management, body fat analyzer (BMI), scale</td>
<td>Portable</td>
</tr>
<tr>
<td>Fitness</td>
<td>Rehabilitation</td>
<td>Motion, posture, stress</td>
<td>Wearable devices</td>
</tr>
<tr>
<td>Fitness</td>
<td>Sports training</td>
<td>Motion, pulse, temperature, heat flux, GSR</td>
<td>Wearable devices</td>
</tr>
<tr>
<td>Hospital</td>
<td>Vital signs / eICU</td>
<td>Real-time vital sign monitoring</td>
<td>Wearable</td>
</tr>
<tr>
<td>Hospital</td>
<td>Location</td>
<td>Patients, new born babies</td>
<td>Wearable</td>
</tr>
<tr>
<td>Medical</td>
<td>Bowels, colon, esophagus</td>
<td>Camera pill, endoscopy</td>
<td>Swallowable capsule</td>
</tr>
<tr>
<td>Medical</td>
<td>Diabetes</td>
<td>Blood glucose level monitor, insulin delivery monitor</td>
<td>Wearable, portable</td>
</tr>
<tr>
<td>Medical</td>
<td>Enhanced diagnostics</td>
<td>Various, sensors and vital signs monitoring</td>
<td>Wearable, portable</td>
</tr>
<tr>
<td>Medical</td>
<td>Heart / vital signs</td>
<td>Pulse, ECG, blood pressure, respiration, temp, SpO2</td>
<td>Wearable, portable</td>
</tr>
<tr>
<td>Medical</td>
<td>Heart arrhythmia</td>
<td>Heart rhythm monitoring and defibrialtor</td>
<td>Implant, portable</td>
</tr>
<tr>
<td>Medical</td>
<td>Parkinsons</td>
<td>Deep brain stimulator</td>
<td>Implant</td>
</tr>
<tr>
<td>Wellbeing</td>
<td>Sleep</td>
<td>EEG monitor</td>
<td>Wearable</td>
</tr>
<tr>
<td>Wellbeing</td>
<td>Stress / emotion</td>
<td>Heat rate, muscle tension, GSR (skin conductance)</td>
<td>Wearable, portable</td>
</tr>
</tbody>
</table>

Tip of the iceberg! And most either use or could benefit from wireless
Overview of technical requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wearable BAN Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coexistence/robustness</td>
<td>Good (low interference to other systems, high tolerance to interference)</td>
</tr>
<tr>
<td>Data Rates</td>
<td>Nominally 1-100 kbps (vital sign monitoring)</td>
</tr>
<tr>
<td>(De-) insertion</td>
<td>< 3 seconds</td>
</tr>
<tr>
<td>Network topology</td>
<td>Star (mandatory), mesh (optional)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Low, autonomy > 1 yr (1% duty cycle, MAC sleep modes, 500 mAh battery)</td>
</tr>
<tr>
<td>QoS (Medical BAN)</td>
<td>PER < 10%, delay < 125 ms</td>
</tr>
<tr>
<td>Reliability</td>
<td>Robust to multipath interference (> 99% link success/availability)</td>
</tr>
<tr>
<td>SAR regulations</td>
<td>< 1.6 mW (US) / < 2.0 mW (EU)</td>
</tr>
<tr>
<td>Scalability</td>
<td>High, up to 256 devices</td>
</tr>
<tr>
<td>Range</td>
<td>≥ 3m</td>
</tr>
<tr>
<td>Security / privacy</td>
<td>3-level: 1) unsecured, 2) authentication, 3) authentication and encryption</td>
</tr>
</tbody>
</table>

Source: IEEE802.15.6

Body sensor devices are typically miniature and low power
Where does the information go? Who is the service provider?

Massive volumes of personal data

Heterogeneous networks

- Dependable
- Secure / trusted
- Flexible
- Scalable
- Simple
- Mobile

Cloud

Virtual Machine (VM)

100’s of millions to billions of devices

15-13-0415-00-0dep

Many millions of users

- Personal healthcare communities
 - Doctors, hospitals, continuous diagnostics…
- Social Networks (wellbeing)
 - Caregivers, relatives, support groups…
 - Fitness and training communities…
- As well as games and many more…

Personalized health services in an Internet based cloud computing environment…
General issues and limitations of BAN today

- Available frequency bands vary around the world
- Today’s solutions are too large & power consuming - not BAN optimized.
- Solutions for monitoring exercise a few hours / week fall far short of the requirements for unobtrusive 24/7 monitoring (e.g. heart patients at home)
- Solutions must be robust, generally based on standards (incl. defacto IND standards), support worldwide operation, compatible with existing solutions, simple and low cost.
- Miniature, ULP wireless solutions tailored to the unique requirements of BAN are needed.
- At the same time, we must gain user acceptance and confidence.
- Additionally, the business case may need to be clarified
Key technical / R&D subjects for BAN today

- Radio co-existence, robustness, QoS, security
- ULP multi-radio PHY and enhancements
- Low complexity, ULP MAC
- Multi-layer solutions (PHY-MAC through API and applications)
- Heterogeneous networks
- End-to-end system, handling and presentation of data
- Interoperability
- Security / privacy (low complexity means)
- Smart control, coordination and management
- Implant communication

Use what exists, fill in the gaps, and make it work better.
This is the mission of the new ETSI TC SmartBAN
ETSI TC SmartBAN

- ETSI Technical Committee (TC) SmartBAN was approved March 2013 for a 6 month trial period
- Responsible for development and maintenance of ETSI standards, specifications, reports, etc...
- Support development and implementation of SmartBAN network technologies (Wireless BAN, Personal BAN, Personal Networks etc.) in health, wellness, leisure, sport and more.

Initial ETSI members supporting SmartBAN
- CNIT (University of Florence)
- CSEM
- Cybernetic Medical Systems
- CWC Oulu
- IMEC
- iMinds
- Medtronic Bakken Research
- IMT/Telecom Sud Paris
- Toshiba Research Europe

www.hermes-europe.net/
ETSI TC SmartBAN organization

- At the SmartBAN workshop held at BodyNETS 2012 in Oslo, key technical challenges for SmartBAN were identified.

- These were refined at the ETSI eHealth meeting held in Geneva on 23 November 2012 and organized according to six main tracks or projects:
 1. Heterogeneity management, data representation and transfer
 2. Smart control, network management, interoperability & security
 3. Multi-layer, co-existence and dependability for SmartBAN
 4. Low complexity MAC and routing for SmartBAN
 5. Enhanced, ultra-low power PHY for SmartBAN
 6. SmartBAN implant communication

These projects are included in the Terms of Reference (ToR) which defines the basis for TC SmartBAN
Initial Work Items (WI)

- Project 1: Heterogeneity management, data representation and transfer
 - WI 1.1 - Service, application and data representation (IMT/Telecom SudParis)

 To define service and application enablers, data representation and transfer formats and to identify the required management and control information

- Project 3: Multi-layer, co-existence and dependability for SmartBAN
 - WI 3.1 - 2.4 GHz band coexistence (CNIT)

 To study Smart BAN coexistence with all the users in the 2.4 GHz band

- Project 4: Low complexity MAC and routing for SmartBAN
 - WI 4.1 - Low complexity MAC and routing requirements for SmartBAN (Toshiba Research Europe)

 To study the requirements for low complexity MAC and routing for SmartBAN

Currently, three open Work items.
Thank you for your attention