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Other Projects 

• Low phase noise oscillators: 
– Dual mode, 

– Quadrature. 

• Wideband low phase noise VCO: 
– 2.4GHz – 5.6GHz that satisfies ALL cellular specifications 

• Low power, high speed ADC 
– 8GS/sec, 4b with 32mW 

– 1.2GS/sec, 4b with 2mW 

• Narrow pulse generation on CMOS 
– 1.6ps pulse on standard 65nm CMOS 

• A 260GHz Amplifier 
– 9.2dB gain 

– -4dBm Psat 
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• Imaging (e.g., detection of concealed 
weapon, cancer diagnosis, and 
semiconductor wafer inspection ) 

• Compact range radars 

• High data rate communication 
(e.g.,100 Gbps) 

 

High power is needed for these 
applications 

Application of THz Systems 



• Skin cancer detection: 

– Large tumors can extend 15mm beyond the visible border 

– Significant number occur on face 

– Existing techniques can have high false negative rates and is time and 
personnel intensive 

– At 700GHz, we can have 40µm depth resolution and 1mm penetration 

• Tooth decay: 

– Small cavities are hard to detect 

– Earlier detection equates to better outcomes 

– X-ray has limited resolution 

 

 

Application of THz Systems 



• Corneal hydration sensing: 
– Diseases and procedures: 

• Corneal Graft surgery 
• Fuch’s Dystrophy 
• Keratoconus 
• Glaucoma 
• LASIK 

– Current methods based on ultrasonic or optical 
thickness measurements 

– Thickness measurement very accurate (~ 9 um) 
– Mapping from thickness to hydration very inaccurate 

(+/- 5% by volume) 
– Physiologic variation confounds measurement 
– Listed diseases and procedures need hydration 

sensitivity in the range of 0.8% - 3% depending on 
application 

– THz imaging results in better than 0.2% sensitivity 
 

 

Application of THz Systems 



Application of THz Systems 
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Application of THz Systems 

• Current clinical methods rely 
on visual and tactile 
assessment of burned skin 

• Current imaging methods 
lack dynamic range for 
margin detection 

– Laser Doppler Imaging 

– Vital Dyes 

– PS-OCT 

– Thermal Imaging 

• THz imaging results in mm-
resolution detection. 

 

 



 
 
Fundamental Challenges: 
 
•  Transistors offer no power gain above fmax 
•  Limited power efficiency of devices 
•  Limited break down voltage 
•  Quality factor of passives is low 
   

High power signal 
generation is the main 
challenge in realizing 
CMOS THz systems. 

 
 

Challenge 
 

Electronic Source  
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Solid-State THz Sources (CW)

Electronic Source  
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progress 



Terahertz Electronic Sources 

• Travelling electron beams 
– Example: BWO  
– Up to 1 mW around 1 THz 
– Very bulky and expensive 

• Josephson arrays 
– Quantum tunneling in superconductors 
– Cryogenic temperatures 
– < 1µW power levels 

• Solid-state devices 
– Limited by electron scattering 
– InP devices: 100 µW to 1 mW around 400 GHz 



Solid-State Devices for Terahertz 

• Diodes (Gunn, IMPATT, Tunneling, etc.) 
• Compound semiconductor transistors (InP HBT, GaN 

HEMT, etc.) 
 Large breakdown voltages (i.e. GaN > 20 V) 
High cut-off frequency (fmax ~ 1 THz) 
x Expensive material 
x Not suitable for large scale integration  

• CMOS transistors 
Cheap and versatile technology 
x Low supply voltage (~ 1.2 V) 
x Low cut-off frequency (fmax< 0.25 THz) 

A CMOS Terahertz solution is highly 
desirable but challenging  



Signal Generation Above Cut-off  

• A nonlinear process generates 
harmonics of the fundamental 
frequency above fmax . 

• Device nonlinearity can be exploited 
– Diodes: IMPATT, Gun, Tunneling, Schottky  
– Transistors: HBT, HEMT, CMOS 

• Two approaches: 
 Multiplier :  a high power source is normally 

provided off-chip. 
 Harmonic oscillator : The oscillator is 

implemented on chip 
• On-chip implementation is the ultimate 

solution 
 

fo N x fo

High Power
Off-chip Nonlinearity

DC N x fosc

Active device
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• Effective harmonic 
generation and combining 
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• Effective harmonic 
generation and combining 
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Theory 
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Implementation 

• The power and frequency test setups 
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Results 
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Results 
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• The output power is not saturated 
• A maximum of -6.6dBm is achieved at 244GHz 



• Main structure: a compact partially-coupled ring 

• Simultaneous matching at fundamental (input) and 2nd 
harmonic (output) 

– Pads are part of the 
input/output matching 

– Rp1 and Rp2: leakage paths for 
accumulative charge to avoid 
oxide breakdown 

A 480 GHz Doubler 



Experimental Results 

– 65nm Bulk LP CMOS 
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Fundamental Limit? 

• Most of the fundamental oscillators have the oscillation 

frequency in the order of the half of the fmax  of the 

transistors. Why not higher? 

• What is the maximum oscillation frequency of a circuit 

topology, considering the quality factor of the passive 

components? 

• For a fixed frequency, what is the topology that results in 

maximum output power? 
 



Fundamental Limit 
• Example: IBM 130 nm CMOS process: 

– fmax: simulated: 174 GHz 

– fmax: measured: ~135 GHz 

• Regular Cross-Coupled oscillator: 
– Maximum achievable frequency (simulation): 120 GHz 

– This is with IDEAL inductors! 
 VDD 



Activity Condition 

• Normalized real power flowing out of the device: 
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Maximum Activity 

• Optimum gain and phase conditions for maximum generated 
power (maximum oscillation frequency) 
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Higher Frequency: Harmonics 

• In order to achieve higher frequencies, we need to generate 

strong harmonics 

• This means we should maximize the swing at the fundamental 

frequency 

• It might be better to back off from the maximum possible 

oscillation frequency to boost the harmonic generation 

• We need to maximize “Gm” 
 



Optimum Conditions 

• Optimum phase and voltage conditions in a 65nm process 
• Target frequency is 450 GHz  
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Triple Push Oscillator 
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Implementation 
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Results: Spectrum 

• The second harmonic is 15.5dB lower than the third harmonic 
• Output frequency is 482GHz 



Results: Power 

• Measured output power using both setups  

-20

-18

-16

-14

-12

-10

-8

-6

-4

0 10 20 30 40 50 60 70

DC Power (mW)

C
al

ib
ra

te
d 

O
ut

pu
t 

P
ow

er
 (d

B
m

)

-2

0

Measured with power meter

Measured with harmonic 
mixer and spectrum analyzer



Outline 

• Motivation 

• Terahertz Frequency Multipliers 

• High Power Terahertz Oscillator Design 

• A High Power THz VCO 

• THz Radiator Arrays 

• Conclusion 

 
 



Challenge: Terahertz VCO 

 At mm-wave and terahertz frequencies it is challenging to get high 
tunability with varactors due to dominance of device parasitics 

 Varactors are very lossy at mm-wave and are not desirable in mm-
wave and terahertz signal generation 

Ref. Technology Fundamental 
 (GHz) 

Output frequency 
(GHz) 

Power 
(dBm) Tunability 

JSSC ’06 130nm CMOS 102GHz 102 GHz -25 dBm 0.2% 

ISSCC 09 32nm CMOS SOI 102GHz 102GHz N/A 4.2% 

ISSCC `08 45nm CMOS 205GHz 410GHz -47 dBm - 

ISSCC ’11 45nm CMOS 150GHz 300GHz -19 dBm - 

JSSC ‘11 65nm CMOS 160GHz 480GHz -8 dBm - 



Coupling: Adler’s Model 

• Adler’s model assumes sinusoidal weak coupling.  
• A good coupling model around resonance. 
• Two oscillators with close center frequencies will 

frequency lock. 
• Depending on the original frequency difference, a phase 

lag (lead) is developed between the source and core. 
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Adler’s equation*: 

In locking mode: 



Tuning the Locking Frequency 

• Observation : If the locking phase shift is modified, the locking 
frequency will be different. 

• A injection locking scheme enforces the frequency and phase 
shift. 

• We propose a structure with additional degrees of freedom to 
control the phase shift. 

Vinj

Vcore

Vinj

ω ω0

Vcore

∆ω
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Delay Coupled Oscillators 

• N core oscillators coupled in a 
unidirectional ring 

• N oscillators and N coupling 
blocks are similar 

• The tuning mechanism is 
based on tuning the coupling 
block 

• We assume weak coupling 
close to resonance 
 
 
 

Governing dynamic equations 
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Approach to Frequency Tuning 

 In a given coupling mode Ψ is fixed 
 Changing Φc results in change in the locking frequency 

 

-π -π/2 π/2 π 3π/2

π/2

π

-π/2

φc

Ψ

-3π/2

-π

Ψ1

Ψ2

Ψ0

Ψ3

Ψ2
o

o

o

o

o

N=4

         

 

φc

φc
φc

φc

 

 

 Ψ = Ψ1

Φc

o



A Terahertz Tunable Source 

• Features of the proposed source 
 Efficient harmonic generation 
 Power combining from multiple sources 
 Tuning separated from power 

generation 
 A scalable scheme 

• Design steps 
– Choose the best harmonic frequency 
– Select the number of cores (N) 
– Design the coupling and combing 

blocks φ3

φ4

φN-1
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THz 
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Vinj
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Silicon Prototype 

• Standard 65nm LP bulk 
CMOS  

• Grounded CPW for lines 
• Ground shielding between 

blocks 
• Two versions are measured 

– A 290 GHz source 
– A 320 GHz source 
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Measurement Setup 

• Two setups for power and frequency. 
a) Frequency setup 

b) Power setup 
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The 290 GHz Source 

• Chip performance 
summary 
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The 320 GHz Source 

• Chip performance 
summary 
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A 2x2 Phased Array 

• 4 coupled cores radiate 
separately 

• Output power is spatially 
combined 

• Consider two cases 
 Equal change in all Φc’s:  

 Frequency control 
 Differential change in Φc’s:  

 Phase control 
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Example of Beam-Forming 

• Vy : Beam steering in y direction 
• Vx : Beam steering in x direction 
• Superposition of two differential voltages : 2-D beam 

forming 

φ2φ1

φ3φ4

+ Vy -

φ2φ1

φ3φ4

+ 
V x

 -



Scalable Architectures 

• Scalability and stability 

• Coupling topology 

• 2-D beam forming  

• Frequency tuning 
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A 4x4 Terahertz Phased Array 

 Chip fabricated in a CMOS 65nm GP bulk process. 
 Simulation results 

– Center frequency: 350 GHz 
– Tuning range: 8% 
– Generated power:  3.2 mW 
– Radiated power: 1.4 mW 
– EIRP > 100 mW 

 2-D beam forming 
 Highly scalable 
 No global routing 
 

 
 



260-GHz Broadband Array 
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260-GHz Broadband Array 



260-GHz Broadband Array 
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CMOS mm-Wave & THz Amplifiers  

• Signal amplification is challenging in CMOS: 

• CMOS scaling is reaching its limit. 

• Operation frequency of these systems is close to the 
maximum oscillation frequency (fmax) of the transistors. 

• Maximum available gain (Gma) of the transistors drops 
below useful level for most applications. 

• PAE drops as the gain drops at high frequencies. 

We need to boost Gma to its maximum possible value.  



Optimum Conditions 

Gain is maximized by providing optimum voltage gain 
and phase conditions for the device. 

 Assuming most of the input power flows from source to port 1 
of the device and most of the output power flows to the load: 
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Chip Photo 
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VoutVin
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• Inductors are implemented using microstrip transmission 
lines. 

• Capacitors are implemented using metal finger capacitors 
or the capacitance pads. 

 
 



S-Parameter Measurement 

• Power gain of 12.5 dB is achieved at 107 GHz. 
• Input and output reflection coefficients are -13 dB and 

-19 dB, respectively. 
• DC power consumption is 31 mW. 
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Summary 

• It is critical to have a good device understanding to squeeze 

out the maximum power/gain 

• E/M modeling is critical 

• Built-in self test is highly desirable 

• RF engineers need to learn more microwave/device physics 

• For some applications CMOS is not sufficient and compound 

semiconductors (especially GaN) show great potential. 
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