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•  Nanotechnology is providing a new set of tools to the engineering 
community to design and manufacture novel electronic components, 
which are just a few cubic nanometers in size 

•  The integration of several of these nano-components into a single entity 
will allow enable the development of more advanced nano-devices 

•  By means of communication, nano-devices will create novel 
nanonetworks and accomplish complex tasks in a distributed manner 

Nanonetworks 
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I. F. Akyildiz and J. M. Jornet, “Electromagnetic Wireless Nanosensor Networks,” 
Nano Communication Networks Journal (Elsevier), March 2010. 
I. F. Akyildiz and J. M. Jornet, “The Internet of Nano-Things,”  
IEEE Wireless Communication Magazine, December 2010. 
I. F. Akyildiz, J. M. Jornet and M. Pierobon, “Nanonetworks: A New Frontier in Communications,” 
Communications of the ACM, November 2011. 
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•  The miniaturization of a classical metallic antenna to meet the size 
requirements of nano-devices would impose the use of very high resonant 
frequencies (well above 100 THz) 

•  The available transmission bandwidth increases with frequency… 
… but so does the propagation loss!!! 

•  The feasibility of nanonetworks would be compromised if this approach were 
followed due to: 
–  The very limited energy and power of nano-devices 
–  The lack of nano-transceivers able to operate at these frequencies 
–  The unknown behavior of classical metals in nanostructures 

 
•  We need a new technology to enable EM communication for nano-devices!!! 

Communication in Nanonetworks 
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•  A one-atom-thick planar sheet of bonded carbon atoms in a 
honeycomb crystal lattice: 
–  Many scientists had been looking for it since 1859 
–  First experimentally discovered in 2004 

•  Andre Geim and Konstantin Novoselov  
(Nobel Prize in 2010) 

Graphene 
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•  First 2D crystal ever known to us: 
–  Only 1 atom thick!!! 

•  World’s thinnest and lightest material 

•  World’s strongest material 
–  E.g., harder than diamond, 300 times stronger than steel 

•  Bendable, i.e., takes any form you want 

•  Very high electron mobility 
–  E.g., much better conductor than copper or silicon 

•  Transparent material 

•  Very good sensing capabilities 

Graphene 
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•  Graphene-based nano-
antennas can radiate at 
much lower frequencies 
than metallic nano-
antennas… 

•  … by exploiting the 
behavior of plasmons in 
graphene 

Graphene-based Plasmonic Nano-antennas 
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J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-antennas for Terahertz Band 
Communication in Nanonetworks,” submitted for journal publication, 2012. 
Preliminary work in 4th European Conference on Antennas and Propagation (EUCAP), 
Barcelona, Spain, April 2010. 
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•  Graphene supports the propagation of Surface Plasmon Polariton 
(SPP) waves at frequencies in the Terahertz Band (0.1-10 THz): 

–  Global oscillations of electric charge at the interface between 
graphene and a dielectric material 

Graphene Plasmonics 
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•  The response of graphene-based plasmonic nano-antennas  

•  Depends on the dynamic complex wave vector of SPPs in graphene 

•  Depends on the dynamic complex conductivity of graphene 

•  Depends on the energy band-structure of the graphene structure 

Characterization of Graphene-based  
Plasmonic Nano-antennas 
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•  We use the Kubo formalism to compute the dynamical 
complex conductivity of graphene 
–  I.e., we count all the allowed electron transitions in 

the energy band structure of finite-size graphene 
nanoribbons 

•  The energy band-structure of graphene is given by: 
 
 
where 
 

Conductivity of Graphene Nanoribbons 
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•  The dynamical complex conductivity σ of GNRs depends on the 
polarization of the incident electromagnetic field (α = x, y): 

 
 
where 

Conductivity of Graphene Nanoribbons 
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f =  frequency
 = reduced Planck constant
e =  electron charge
S =  GNR size
s,s '∈{−1,1} = band indexes
n,m ∈{1,2,...N} = sub-band indexes
γ 0 ~ 3 eV = nearest-neighbor atom interaction
〈φm

′s | vα |φn
s 〉 =  velocity operator for the transition from s,n( )  to ′s ,m( )

k = wave vector parallel to the GNR edge

nF ε( ) = 1

1+ e
ε−µ
kBT

=  Fermi-Dirac Distribution

µ = chemical potential
kB =  Boltzmann constant
T = temperature

K.I. Sasaki, K. Kato, Y. Tokura, K. Oguri, and T. Sogawa, “Theory of optical transitions in graphene 
nanoribbons,” Physical Review B, vol. 84, p. 085458, Aug. 2011.  
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•  For µ=0 eV, the conductivity along the long edge (x) is dominated by 
inter-band transitions at specific frequencies (s≠s’). 
 

•  For µ=0.3 eV, the conductivity along the long edge (x) is dominated by 
intra-band transitions at low frequencies (s≠s’). 
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•  Surface Plasmon Polariton waves are confined EM waves coupled to surface 
electric charges at the interface between a metal and a dielectric  

•  The dynamic complex wave vector kspp of SPP waves in graphene 
determines the propagation properties of SPP waves: 

•  Two types of SPP modes can be supported by the GNR depending on its 
conductivity: 
–  Transverse Magnetic (TM): there is no magnetic field in the direction of 

propagation 
–  Transverse Electric (TE): there is no electric field in the direction of 

propagation 

SPP waves in GNRs 
November 2012 
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Re{kspp} = 2π
λspp

=  determines the SPP confiment factor

Im{kspp} =  determines the SPP decay
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•  Starting from the Maxwell’s equations and applying the boundary conditions 
at the interfaces between air, graphene and the dielectric material, the 
dispersion equation for TM SPP waves is found as: 

•  TM modes along the α-axis only exist if the imaginary part of the conductivity, 
σαα, is positive. ! Only along x, only when µ>0 

 

TM SPP Waves 
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•  By following a similar procedure as in the previous case, the dispersion 
equation for TE SPP waves can be written as: 

 
    A closed-form expression for kspp can be found 

   
    where  

 

 

TE SPP Waves 
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•  TE SPP wave modes only exist when the imaginary part of the 
conductivity σα’α’ is negative. 
–  However, there is only meaningful confinement for TE SPP modes 

that propagate along the x, only when µ>0. 

TE SPP Waves 
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•  The confinement of TE SPP modes is much lower than that of TM SPP 
modes ! We prefer higher compression modes for miniature antennas. 
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•  Plasmonic nano-antennas differ largely from classical metallic antennas: 

–  Finite complex conductivity:  
•  In classical antenna theory, it is common to assume Perfect Electrical 

Conductor (PEC) behavior of the antenna building components.  

•  A PEC material has a conductivity that tends to infinity, which is not the case 
of graphene (as well as any real metal). 

–  Plasmonic current wave:  
•  In classical antenna theory, the electrical current wave traveling along a PEC 

antenna propagates at the speed of light in vacuum c0 with wave vector k0. 

•  On the contrary, the electrical current wave traveling along a plasmonic 
antenna propagates at the much lower SPP wave propagation speed with 
wave vector kspp.  

•  Moreover, it can be analytically proven that a plasmonic nano-antenna cannot 
support an additional current which propagates with k0.  

 

Plasmonic Nano-antenna Theory 
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•  By modeling the graphene-based nano-antenna as a resonant plasmonic 
cavity, a condition on the antenna length (which so far has been just 
assumed much larger than the antenna width) is imposed: 
–  For a TM SPP resonant mode along the x-axis: 

–  For a TE SPP resonant mode along the x-axis: 

    where 
 

Antenna Frequency Response 
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p,q = TE resonant mode indexes, p = q = 1 for fundamental TE mode
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•  The most significant mode for radiative plasmonic cavities corresponds 
to the TM fundamental mode (m=1). 

Antenna Frequency Response 
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•  These results match our preliminary results based on the transmission 
line properties of GNRs. 
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•  The unique conductivity of semi-finite-size GNRs allows the 
propagation of tightly confined SPP waves in graphene. 

•  Graphene-based nano-structures can be modeled as radiative 
plasmonic cavities, which support different resonant modes. 

•  Due to the very tight confinement of the SPP waves, compact 
antennas can be developed. 

–  The resonant frequency for a one-micrometer-long few-
nanometer-wide antenna lies in the Terahertz Band. 

•  Next steps:  

–  What is the efficiency of these antennas?  

–  How can it be improved? 

Conclusions 
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•  Objectives: 
–  To prove the feasibility of graphene-enabled EM NANOCOMMUNICATION 
–  To establish the theoretical foundations  for EM NANONETWORKS 

GRANET: Graphene-enabled 
Nanocommunication Networks 
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•  Objectives: 
–  To establish the theoretical and experimental foundations of Terahertz Band 

communication networks (not NANOSCALE, not just GRAPHENE) 

TERANETS: Terahertz Band  
Communication Networks 

November 2011 

Slide 28 Josep Miquel Jornet, Georgia Tech 

"  Transmitter 
"  Receiver 

"  Channel 
Modeling 

"  Capacity 
Analysis 

"  Modulation 
"  Coding 

"  Medium Access 
Control 

"  Interference 
Modeling 

"  Link Error 
Control 

"  Network 
Discovery 

"  Addressing 
"  Routing 

Transceiver Physical Layer Data Link Layer Network Layer 

"  Very Large 
Arrays 

Antenna 

Experimental Validation 



doc.: IEEE 802.15-15-12-0618-00-0thz 

Submission 

Thank You! 

November 2012 

Slide 29 Josep Miquel Jornet, Georgia Tech 

Josep Miquel Jornet – jmjornet@ece.gatech.edu 
Prof. Dr. Ian F. Akyildiz – ian@ece.gatech.edu 
 
Broadband Wireless Networking Laboratory @ Georgia Tech 
www.ece.gatech.edu/research/labs/bwn 


