Submission Title: MMIC Chip Sets for Wireless Communication up to 480 GHz
Date Submitted: 15 July, 2012
Source: Ingmar Kallfass, Fraunhofer Institute for Applied Solid State Physics
Tullastraße 72, D-79108 Freiburg, Germany
Voice: +49 761 5159 486, FAX: +49 761 5159 71486, E-Mail: ingmar.kallfass@iaf.fraunhofer.de

Re: DCN 15-12-0323-00-0thz

Abstract: The architecture, implementation and performance of active MMIC-based transmit and receive frontends for sub-mmW communication are presented. A focus is on the generation of local oscillator signals for up- and down-conversion by frequency multiplication up to 480 GHz. Transmission experiments at a center frequency of 220 GHz achieve up to 25 Gbit/s data rate.

Purpose: Review of current progress on the implementation of active electronics-based transmitters and receivers for terahertz communication.

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
MMIC Chip Sets for Wireless Communication up to 480 GHz

Ingmar Kallfass1,2, Ulrich Lewark2, Jochen Antes2
Daniel Lopez-Diaz1, Axel Tessmann1, Arnulf Leuther1

1 Fraunhofer Institute for Applied Solid-State Physics, Freiburg, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany
Abstract

The architecture, implementation and performance of active MMIC-based transmit and receive frontends for sub-mmW communication are presented.

A focus is on the generation of local oscillator signals for up- and down-conversion by frequency multiplication up to 480 GHz.

Transmission experiments at a center frequency of 220 GHz achieve up to 25 Gbit/s data rate.
Generic Millimeter-Wave Analog Frontend

BB or IF signal processing → D/A

D/A

generic analogue frontend

frequency generation and/or multiplication

LO
e.g. VCO (comm.) DDS (radar)

IF/BB

frequency translation (up-conversion)

Rx amplification

IF/BB

frequency translation (down-conversion)

Tx amplification

distribution network

switches

filters

phase shift

antennas
MMIC-based sub-mmW frequency generation

- Frequency generation < 20 GHz
- Frequency platform in W-band
- Single-chip cascade of multiplication and amplification stages

Waveform generation (arbitrary architecture)

- Oscillator (OSC)
- Phase detector (PD)
- Voltage-controlled oscillator (VCO)
- Divider (1/n)
- Direct digital synthesizer (DDS)
- Local oscillator (LO)
- Frequency multipliers: 6, 8, 9, 12
- Frequency range:
 - 6.25 - 9.17 GHz (×12)
 - 8.3 - 12.2 GHz (×9)
 - 9.4 - 13.8 GHz (×8)
 - 12.5 - 18.3 GHz (×6)

- W-band frequency multiplier
- f₀ = 75 - 110 GHz
- fWR-10 = (150 - 220 GHz)
- fWR-2 = (300 - 440 GHz)
- fWR-3 = (225 - 330 GHz)
- fWR1.5 = (450 - 600 GHz)
FET Frequency Multipliers

Power compression

Conduction angle (class A-C)

output power [dBm]

input power @ f₀ [dBm]

Fourier coefficients [Iₙ/Iₘₐₓ]

Gate voltage [V]
Frequency Multiplier Figures of Merit

- Multiplication factor N
- Output power P_{out}
- Conversion Gain G_C
- Suppression of unwanted harmonics S
- Degradation of phase noise $\geq 20 \cdot \log N$
- DC power

Phase / amplitude modulation

$$\begin{bmatrix} \theta_2 \\ m_2 \end{bmatrix} = \begin{bmatrix} T_{pp} & T_{pa} \\ T_{ap} & T_{aa} \end{bmatrix} \begin{bmatrix} \theta_1 \\ m_1 \end{bmatrix} = \begin{bmatrix} N & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ m_1 \end{bmatrix}$$
W-Band Multiplier-by-Twelve
MMIC and Waveguide Module

Kallfass et. al. EuMIC 2011

DC supply board
WR10-waveguide
50 µm MS quartz transition
W-Band Multiplier-by-Twelve Module Performance

- Range: 78 – 100 GHz
- Bandwidth: 22 GHz (25%)
- Spectral purity: >12 dBc

- Output power: -1.5 dBm
- Conversion gain: 2.5 dB

![Graph showing harmonic frequencies and output power]
(X to) W-Band Multiplier-by-Nine

Lewark et. al. GeMIC 2011
(X to) W-Band Multiplier-by-Nine

Optimized BW and spectral purity by DDS controlled bias and Pin

- DDS generation
- Constant bias and P_{in}

Output Power [dBm]

<table>
<thead>
<tr>
<th>Input Frequency [GHz]</th>
<th>86</th>
<th>88</th>
<th>90</th>
<th>92</th>
<th>94</th>
<th>96</th>
<th>98</th>
<th>100</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDS generation</td>
<td>-30</td>
<td>-25</td>
<td>-20</td>
<td>-15</td>
<td>-10</td>
<td>-5</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Constant bias and P_{in}</td>
<td>-25</td>
<td>-20</td>
<td>-15</td>
<td>-10</td>
<td>-5</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Output Frequency (9th harmonic) [GHz]

- 8 f_0
- 9 f_0
- 10 f_0
- 11 f_0

Phase Noise [dBc]

- E8257D + multiplier MMIC
- E8247C (15.55GHz)
- E8257D (10.45GHz)
- E8257D (10.45GHz) + 20 Log(9)
- E8247C (15.55GHz) + 20 Log(6)

Phase noise degradation = 20 log 9

[Diagram showing DDS generation, constant bias, and output power vs. input frequency, with phase noise graph showing various curves for different frequencies and multipliers.]
Chip Set for 220 GHz Transmission

- $f_{RF,c}$: 220 GHz
- B_{RF}: 34 GHz
- f_{LO}: 9.17 GHz
- f_{LO}: 110 GHz ($n = 12$)
- B_{BB}: 17 GHz
- P_{tx}: ca. 0 dBm
- NF_{rx}: ca. 6.8 dB
- $G_{rx/Gtx}$: ca. 15 dB
220 GHz Transmission Coherent LO

<table>
<thead>
<tr>
<th>Setup</th>
<th>Rate</th>
<th>Dist.</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherent LO</td>
<td>25 Gbit/s</td>
<td>10 m</td>
<td>Q >3</td>
</tr>
<tr>
<td></td>
<td>15 Gbit/s</td>
<td>20 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full DVB-S</td>
<td>20 m</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>30 Gbit/s</td>
<td>n/a</td>
<td>BER < 10(^{-3})</td>
</tr>
<tr>
<td></td>
<td>16 Gbit/s</td>
<td>2 m</td>
<td>Q^2 > 13.9</td>
</tr>
</tbody>
</table>

![Graph showing bit rate vs. quality factor Q](image)

- **Bit rate** in Gbit/s
- **Distance** measured in meters
- **Quality** metrics include Q, BER, Q^2

![Image of transmission setup](image)
Optical – 220 GHz Wireless – Optical Link

16 Gbit/s NRZ-OOK after 2x20 km fiber span
($P_{RX1} = P_{RX2} = -12$ dBm)

König et. al. OFC 2012
220 GHz Transmission Incoherent LO

<table>
<thead>
<tr>
<th>Symbol rate</th>
<th>Data rate</th>
<th>EVM</th>
<th>BER[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1 GBd</td>
<td>12.4 %</td>
<td>< 10^{-10}</td>
</tr>
<tr>
<td></td>
<td>2 GBd</td>
<td>18.1 %</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>8PSK</td>
<td>1 GBd</td>
<td>10.7 %</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>16APSK</td>
<td>1 GBd</td>
<td>9.7 %</td>
<td>-</td>
</tr>
<tr>
<td>16QAM</td>
<td>1 GBd</td>
<td>10.5 %</td>
<td>10^{-3}</td>
</tr>
</tbody>
</table>

Chip Set for 240 GHz Transmission

- $f_{RF,c}$: 240 GHz
- B_{RF}: 80 GHz
- f_{LO}: 55–65 GHz
- f_{LO}: 110-130 GHz ($n = 2$)
- B_{BB}: 40 GHz
- P_{tx}: 0 dBm (excl. PA)
- NF_{rx}: ca. 6.8 dB
- $G_{rx/Gtx}$: n/a

Additional notes:
- RF 200 - 280 GHz
- IFI, IFQ: 0 - 40 GHz
- LO: 110 - 130 GHz
- LO: 55 - 65 GHz
- MPA: doubler
- VCO: 55 - 65 GHz
240 GHz Rx MMIC

LNA – fund. Mixer – LO doubler
IQ channels
Also as Tx

50 nm mHEMT, 2.5 x 1 mm²

Conversion gain (dB)

PLO (dBm)

Conversion gain (dB)

IF frequency (MHz)
240 GHz Tx MMIC

LNA (Tx) – subharm. Mixer
IQ channels
Also as Rx

50 nm mHEMT, 2.5 x 1 mm²
300 GHz Source and Receiver

- **Source**
 - LO \(\sim 100 \text{ GHz} \)
 - tripler
 - LNA
 - RF \(290 \rightarrow 320 \text{ GHz} \)

- **Heterodyne Detector**
 - LNA
 - mixer
 - buffer
 - tripler
 - LO \(\sim 100 \text{ GHz} \)
 - IF

Input Frequency in GHz

Output Power (dBm)
- \(P_i = 14 \text{ dBm} \)
- without buffer

Conversion Gain (dB)
- \(\text{IF} = 100 \text{ MHz} \)
- \(P_{LO} = 8 \text{ dBm} @ \text{freq/3} \)
- \(V_m = 0 \text{ V} \)

Lewark et. al. EuMIC 2011
Tessmann et. al. CSICS 2011

Ingmar Kallfass, Fraunhofer IAF
480 GHz Frequency Quadrupler

Doubler
balanced (Marchand) class-B cascode FETs

Amplifier
Cascode FETs

Doubler
single-ended class-B FET λ/4 fund. suppression

[Diagram of the 480 GHz Frequency Quadrupler with labeled components such as \(V_{GN} \), \(V_D \), \(V_G \), \(V_C \), and \(V_{D2} \).]
480 GHz Frequency Quadrupler

Doubler
- balanced (Marchand)
- class-B cascode FETs

Amplifier
- Cascode FETs
- ca. 2 dBm Psat
- input power backoff
- reduced load/source pulling

Doubler
- single-ended class-B FET
- $\lambda/4$ fund. suppression

\[P_{\text{DC}} \text{ 50 mW (w/ } P_{\text{RF}}) \]

\[P_{\text{DC}} \text{ 60 mW} \]

\[P_{\text{DC}} \text{ 11 mW (w/ } P_{\text{RF}}) \]
480 GHz Frequency Quadrupler

Output power:
-14.3 dBm

Bandwidth:
>45 GHz
435...>480 GHz

-22 -20 -18 -16 -14
-22 -20 -18 -16

P_{in} = 8 dBm
Four-Stage 480 GHz Amplifier S-MMIC

- Reactively matched common source stages
- Gate width: 2 × 5 µm
- 13.4 dB @ 476 GHz
- >10.5 dB @ 440...481 GHz
- 32 mW (Vd = 1.2 V, Id = 27 mA)
- Simulated NF = 9.9 dB @ 480 GHz
State-of-the-Art: Multipliers

Frequency Multipliers

- diode
- InP HEMT
- pHEMT
- SiGe HBT

Output power [dBm] vs. Output frequency [GHz]

excl. amp incl. amp
Chip Set Overview

- W-Band x9 & x12
- 200 – 280 Tx & Rx
- 280 - 320 x3 & Rx
- 440 - 480 x4 & Rx

- 200 – 240 Tx & Rx

![Graph showing atmospheric attenuation vs. frequency with O2, H2O, and various weather conditions.]