March, 2012

doc.: IEEE 802.15-12-0151-00-004k

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Proposals for Amendments to the FSK PHY of LECIM draft 15-12-0089-02-004k]

Date Submitted: [14 March 2012] Source: [Steve Jillings] Company: [Semtech Corporation] E-Mail: [sjillings@semtech.com]

Re: []

Abstract: []

Purpose: [To assist with the definition of the 15.4k FSK PHY of the LECIM draft standard]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

FSK PHY Amendments

- Add PHY bands for Australia / New Zealand
- Delete 2.4 GHz band from FSK PHY
 - Very limited analysis /data for FSK systems at 2.4 GHz
 - 200 kHz channel raster for 83 MHz of available spectrum is not best use of spectrum
- Proposals for FSK PHY amendments to ensure regulatory compliance and to assist with good spectral efficiency and improved receiver selectivity
- Add MAC mechanism for adaptive data rate

- Section 8.1.1 Frequency Bands and Data Rates
- Amend Table 66 as follows:
 - GFSK modulation
 - Definition of Gaussian FSK is well defined (802.15.4-2011, 802.1...)
 - BT as required to meet local regulatory transmit spectral masks
 - GFSK provides additional margin at channel edge
 - Tighten TX spectrum mask will allow tighter RX specification
 - Can specify "like" modulation for ACR / AACR
- Add the following PHY for Australia / New Zealand

PHY	Frequency	Spreading		Data Parameters		
(MHZ)	(MHZ) Band (MHz) Chip Ra (kchips/		Modulation	Bit Rate (kb/s)	Symbol Rate (kb/s)	Symbols
		-	GFSK	37.5	37.5	Binary
921.5 915 - 9	915 - 928	-	GFSK	25	25	Binary
		-	GFSK	12.5	12.5	Binary

- Section 8.1.2 Channel Assignment
- Add to Table 1

Frequency	Modulation	ChanSpacing	TotalNumChan	ChanCenterFreq ₀
Band (MHz)	(Uplink/Downlink)	(MHz)		(MHz)
915 - 928	GFSK	0.2	63	915.2

• Add to Table 2

Frequency	Modulation	ChanSpacing	TotalNumChan	ChanCenterFreq ₀
Band (MHz)	(Uplink/Downlink)	(MHz)		(MHz)
915 - 928	GFSK	0.1	128	915.1

- References:
 - AS / NZS 4628: 2003
 - Radiocommunications Regulations (General User Radio Licence for Short Range Devices) Notice 2011

- Section 19.2 FSK PHY Specification
- 19.2.2 Modulation and coding for FSK
- Amend Table 78 as follows:
 - Modulation: GFSK / P-GFSK
- Add to Table 78:

Frequency Band (MHz)	Parameter	37.5 kb/s	25 kb/s	12.5 kb/s
	Modulation	GFSK / P-GFSK	GFSK / P-GFSK	GFSK / P-GFSK
915 – 928 (AUS / NZ)	Modulation Index	0.5	1.0	2.0
	Channel spacing (kHz)	200	200	200

- Section 19.2 FSK PHY Specification
- 19.2.2 Modulation and coding for FSK
- Amend Table 79 as follows:
 - Modulation: GFSK / P-GFSK
- Add to Table 79:

Frequency Band (MHz)	Parameter	37.5 kb/s	25 kb/s	12.5 kb/s
	End device to coordinator	GFSK / P-GFSK	GFSK / P-GFSK	GFSK / P-GFSK
915 – 928 (AUS / NZ)	Modulation Index	0.5	1.0	2.0
	Channel spacing (kHz)	100	100	100

- Section 19.2.4 FSK PHY RF Requirements
- 19.2.4.6 Receiver sensitivity
 - Under the conditions specified in 8.1.7, a compliant PHY device shall be capable of achieving a sensitivity of at least:
 - $S_0 = (P_{TX} 120)$ (dBm)
 - S_0 = minimum sensitivity level at the minimum defined BR for the FSK PHY (dBm)
 - P_{TX} = stated transmitted output power of the device (dBm)
 - $S = [S_0 + 10^* log(R/R_0)]$ (dBm)
 - S = required minimum sensitivity level (dBm)
 - R_0 = symbol rate at minimum BR for the FSK PHY (kb/s)
 - R = symbol rate (kb/s)
 - Spreading and / or FEC may be implemented to meet sensitivity limit
 - Refer to 8.1.7 for additional information on receiver sensitivity

March, 2012

- Section 19.2.4 FSK PHY RF Requirements
- 19.2.4.7 Receiver selectivity
- 19.2.4.7.1 Receiver interference rejection
- Amend Table 84 as follows:

CHANNEL SPACING (kHz)	ADJACENT CHANNEL REJECTION (dB)	ALTERNATE CHANNEL REJECTION (dB)
100	25	35
200	30	45

• 169 MHz / 50 kHz single channel PHY. No ACR / AACR interferer

• Amend from line 52 as follows:

• The adjacent channel rejection shall be measured as follows. The interfering signal shall be a compliant GFSK signal, as defined by 19.2.2, of pseudo-random data of length at least 512 bits. The desired signal is input to the receiver at a level 3 dB greater than the minimum allowed receiver sensitivity given in 19.2.4.6.

• Insert after line 54 on page 80:

• Spreading and / or FEC may be implemented to meet sensitivity limit

- Section 19.2 FSK PHY RF Requirements
- 19.2.4.7 Receiver selectivity
- 19.2.4.7.1 Receiver co-channel rejection
 - Add the following text:
 - The minimum receiver co-channel rejection level shall be -10 dB.
 - The co-channel rejection shall be measured as follows. The unwanted signal shall be an un-modulated carrier. The desired signal is input to the receiver at a level 3 dB greater than the minimum allowed receiver sensitivity given in 19.2.4.6.
 - Spreading and / or FEC may be implemented to meet sensitivity limit

- Section 19.2 FSK PHY RF Requirements
- 19.2.4.7 Receiver selectivity
- 19.2.4.7.1 Receiver blocking immunity
 - Add the following text:
 - The minimum receiver blocking immunity levels are given in Table XX.

FREQUENCY OFFSET (MHz)	BLOCKING IMMUNITY (dBm)
1	-50
2	-45
10	-40

• Table XX

- The blocking immunity shall be measured as follows. The unwanted signal shall be an un-modulated carrier. The desired signal is input to the receiver at a level 3 dB greater than the minimum allowed receiver sensitivity given in 19.2.4.6.
- Spreading and / or FEC may be implemented to meet sensitivity limit

References:

- 15-12-0089-02-004k "Preliminary draft for 4k" (Brown)
- 15-12-0014-03-004k "Radio Specification Analysis of Draft FSK PHY" (Jillings)
- 15-11-0027-00-004g "Consideration for Radio Specification Comments" (Jillings)

Aus / NZ Path Loss Analysis:

- Maximum ERP = 1 W (+30 dBm)
- Minimum sensitivity = -90 dBm
- Aus / NZ PHY amendment is suitable for LECIM

Channel Model Parar	neters	Notes
Frequency (MHz)	921.5	Valid Range 150-2400 MHz
Collector Antenna Height (m)	10	Hata Valid Range 30-200 m, including terrain. Erceg Valid Range 10-80m, including terrain
Endpoint Antenna Height (m)	2	Hata Valid Range 1-10 m, Erceg Fixed to 2m.
Distance (km)	1	Valid Range Hata 1-20 km, Valid Range Erceg 100m-8km
Downlink Path Loss Ca	alculation	Notes
Collector Tx Power (dBm)	30	Subject to Tx Power Regulations
Collector Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations
Path Loss (dB)	-122.23	Must reference the right path loss from the Hata or Erceg worksheet
Shadowing Margin (dB)	-16	To buffer against variable shadowing loss
Penetration Loss (dB)	-10	For underground vaults, etc.
Endpoint Rx Antenna Gain (dBi)	0	If using same antenna for Tx, must be same as in Uplink Table
Endpoint Interference (dB)	1	Rise over Thermal Interference
Rx Power at Endpoint (dBm)	-117.23	Compare against Rx sensitivity
Uplink Path Loss Calo	culation	Notes
Endpoint Tx Power (dBm)	30	Subject to Tx Power Regulations. Can be different from Collector
Endpoint Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations
Penetration Loss (dB)	-10	For underground vaults, etc.
Path Loss (dB)	-122.23	Same as Downlink
Shadowing Margin (dB)	-16	Same as Downlink
Collector Rx Antenna Gain (dBi)	0	If using same antenna for Tx, must be same as in Downlink Table
Collector Interference (dB)	2	Rise over Thermal Interference
Rx Power at Collector (dBm)		