Submission Title: Will THz Communication Interfere with Passive Remote Sensing?
Date Submitted: 13 March, 2012
Source: Sebastian Priebe, Technische Universität Braunschweig
Address: Schleinitzstraße 22, D-38092 Braunschweig, Germany
Voice: +49-531-391-2417, FAX: +49-531-391-5192, E-Mail: priebe@ifn.ing.tu-bs.de

Abstract: According to the current ITU spectrum regulations, active THz communication systems can be operated simultaneously in the same frequency bands from 300 to 1000 GHz as passive services as long as theses services are precluded from any interference. Therefore, interference investigations become crucial on the way to a coexistent spectrum usage. Whereas the affection of radio astronomy by THz communications has been considered in doc. 15-10-0829-00-0thz, this presentation introduces thoughts on which scenarios are critical regarding remote sensing and suggests countermeasures against interference.

Re: 15-10-0829-00-0thz-sharing-between-active-and-passive-services-at-thz-frequencies.ppt

Purpose: Input for THz spectrum allocations

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Will THz Communication Interfere with Passive Remote Sensing?

Sebastian Priebe¹, Martin Jacob¹, Thomas Kürner¹

¹ Institut für Nachrichtentechnik, Technische Universität Braunschweig, Germany
Outline

1. Introduction
2. Interference-Critical Scenarios
3. Interference Mitigation Concepts
4. Summary/Outlook
Introduction (1)

- Current spectrum allocation in the THz band:

ITU Radio Regulations Footnote 5.565

- Radio astronomy service: 275-323 GHz, 327-371 GHz, 388-424 GHz, […]
- Earth exploration-satellite service and space research service 275-277 GHz, 294-306 GHz, 316-334 GHz, […]

Administrations are urged to take all practicable steps to protect these passive services from harmful interference.

→ Coexistent spectrum usage favourable
→ Interference studies crucial for the standardization of THz communication systems
Introduction (2)

- Interference with radio astronomy:
 - Investigations carried out by the National Science Foundation
 - Distance of THz transmitter from telescope for interference-free conditions:

→ Interference very unlikely in face of typical telescope locations on high mountains
→ How about **spaceborne** Earth exploration services?
Outline

1. Introduction

2. Interference-Critical Scenarios
 - Nomadic Links
 - Fixed Links
 - Airborne Systems
 - Multiple Interferers

3. Interference Mitigation Concepts

4. Summary/Outlook
Nomadic Links

- Nomadic devices operated outdoor may accidentally be mispointed:

- Points to be studied:
 - How much interference power will reach satellites in the worst case?
 - Which maximum interference power can be tolerated?
Fixed Links

- Directional links with reflecting/scattering objects close to ray path:

→ Interference possible despite highly directive antennas
→ Environmental conditions relevant
Airborne Systems

- THz systems operated inflight:
 - THz up-/downlinks or in-cabin connections thinkable
 - Transmission of THz radiation through windows or composite fuselages
 - Critical due to lower atmospheric attenuation
Multiple Interferers

- Interference from multiple stations may reach the satellite:

 - Superposition of signals from multiple interferers
 - Significant increase of total interference power
 - Stochastic models for interference caused by multiple stations required (e.g. interference probability of one station)
Outline

1. Introduction
2. Interference-Critical Scenarios
3. Interference Mitigation Concepts
4. Summary/Outlook
Interference Mitigation Concepts (1)

1. Transmit power limitations
 • Which is the worst case?
 • Which interference powers will be allowed at maximum?
 • In which way do the transmit powers depend on the scenarios?
 • Which frequencies will be affected?
 • Are there preferable bands for transmission?

 → Transmit power control

2. Intelligent transceiver units
 • How can the TX be switched off automatically in case of skyward orientation?
 • How can devices utilize their orientation and position?
 • How can satellite position data be respected?

 → Sensor data usage
Interference Mitigation Concepts (2)

3. Highly directive antennas
 • How likely is radiation in skyward direction at any rate?
 • Can steerable antennas help?
 → Smart antennas

4. Environment control: Fixed links
 • How does the TX and RX positioning affect the propagation?
 • How can the propagation environment be utilized?
 → Careful transceiver placement and absorbers

5. Environment control: Airborne systems
 • How transparent are composite fuselage and windows in the THz range?
 • What can be achieved with purposeful TX positioning?
 → Absorbing materials/coatings
Outline

1. Introduction
2. Interference-Critical Scenarios
3. Interference Mitigation Concepts
4. Summary/Outlook
Summary/Outlook

• **Interference** between active communication services and passive remote sensing **must be prevented**

• **Critical scenarios are:**
 – Nomadic devices operated **outdoor**
 – Fixed links with reflecting **objects** close to ray path
 – **Airborne systems**
 – Superposition of **multiple interferers**

Necessary steps:

→ **Worst-case estimation of interference powers** in the scenarios
→ **Determination of maximum allowed interference powers**
→ **Development of interference avoidance concepts**
 – Transmit power control
 – Intelligent transceiver units
 – ...

March 2012

Sebastian Priebe, TU Braunschweig
Thank you for paying attention.

Dipl.-Ing. Sebastian Priebe
priebe@ifn.ing.tu-bs.de