Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Proposed Resolutions to various TBDs in the FSK Draft

Date Submitted: February 2012

Source: Cristina Seibert (Silver Spring Networks)

Contact Information: cseibert @ silverspringnet.com

Re: Action items from Jacksonville TG4k session

Abstract: This contribution is prepared to identify recommendations to TG4k.

Purpose:

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Introduction

- Document 15-12-0030-00 recommended inclusion of following bands in TG4k FSK draft:
 - 433MHz ISM band
 - 169MHz European band
- Action item from Jacksonville meeting on link budget analysis for these bands
 - Document 15-11-0602-00
 - And document 15-11-0464-03 as reference
 - Some inconsistencies
- Analysis of modes at 169 MHz European band
- Proposal on an optimal Start-Frame-Delimiter 3-byte pattern

LHM Proposal on FCC Rules @ 433 MHz

- Band extends from 433.05 MHz to 434.79 MHz
- Applications include identification, location, monitoring and tracking of commercial assets
- Bi-directional communication allowed with some duty cycle and listen-before-talk requirements
- Increased transmit power allowance:
 - A field strength of E = 57,700 uV/meter measured at 3 meters
 - Thus a transmit power $P = 0.3 E^2 = 1 mW = 0 dBm$

Link Budget Analysis, 433 MHz Band

Channel Model Parar	meters	Notes
Frequency (MHz)	433	Valid Range 150-2400 MHz
Collector Antenna Height (m)	10	Hata Valid Range 30-200 m, including terrain. Erceg Valid Range 10-80m, including terrain
Endpoint Antenna Height (m)	2	Hata Valid Range 1-10 m, Erceg Fixed to 2m.
		Valid Range Hata 1-20 km, Valid Range Erceg
Distance (km)	1	100m-8km

Downlink Path Loss Ca	lculation	Notes
Collector Tx Power (dBm)	0	Subject to Tx Power Regulations
Collector Tx Antenna Gain (dBi)	2	Subject to Tx Power Regulations
		Must reference the right path loss from the
Path Loss (dB)	-120.91	Hata or Erceg worksheet
Shadowing Margin (dB)	16	To buffer against variable shadowing loss
Penetration Loss (dB)	-10	For underground vaults, etc.
		If using same antenna for Tx, must be same
Endpoint Rx Antenna Gain (dBi)	2	as in Uplink Table
Endpoint Interference (dB)	1	Rise over Thermal Interference
Rx Power at Endpoint (dBm)	-109.91	Compare against Rx sensitivity

Uplink Path Loss Calc	ulation	Notes	
Endpoint Tx Power (dBm)		Subject to Tx Power Regulations. Can be different from Collector	
Endpoint Tx Antenna Gain (dBi)	2	Subject to Tx Power Regulations	
Penetration Loss (dB)	-10	For underground vaults, etc.	
Path Loss (dB)	-120.91	Same as Downlink	
Shadowing Margin (dB)	16	Same as Downlink	
Collector Rx Antenna Gain (dBi)	2	If using same antenna for Tx, must be same as in Downlink Table	
Collector Interference (dB)	2	Rise over Thermal Interference	
Rx Power at Collector (dBm)	-108.91	Compare against Rx sensitivity	

Bi-directional communication and TX output power of 0 dBm

Sensitivity constraints challenging but doable, thanks to the low carrier frequency

Link Budget Analysis @ 433 MHz Band, ETSI Rules

Channel Model Parameters		Notes	Channel Model Parameters		Notes
Frequency (MHz)	433	Valid Range 150-2400 MHz	Frequency (MHz)	2400	Valid Range 150-2400 MHz
Collector Antenna Height (m)	10	Hata Valid Range 30-200 m, including terrain. Erceg Valid Range 10-80m, including terrain	Collector Antenna Height (m)	10	Hata Valid Range 30-200 m, including terrain. Erceg Valid Range 10-80m, including terrain
Endpoint Antenna Height (m)	2	Hata Valid Range 1-10 m, Erceg Fixed to 2m.	Endpoint Antenna Height (m)	2	Hata Valid Range 1-10 m, Erceg Fixed to 2m.
		Valid Range Hata 1-20 km, Valid Range Erceg			Valid Range Hata 1-20 km, Valid Range Erceg
Distance (km)	1	100m-8km	Distance (km)	1	100m-8km
Downlink Path Loss Ca	lculation	Notes	Downlink Path Loss Ca	lculation	Notes
Collector Tx Power (dBm)	10	Subject to Tx Power Regulations	Collector Tx Power (dBm)	24	Subject to Tx Power Regulations
Collector Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations	Collector Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations
Path Loss (dB)	-120.91	Must reference the right path loss from the Hata or Erceg worksheet	Path Loss (dB)	-145.65	Must reference the right path loss from the Hata or Erceg worksheet
Shadowing Margin (dB)	10	To buffer against variable shadowing loss	Shadowing Margin (dB)	10	To buffer against variable shadowing loss
Penetration Loss (dB)	-10	For underground vaults, etc.	Penetration Loss (dB)	-10	For underground vaults, etc.
Endpoint Rx Antenna Gain (dBi)	2	If using same antenna for Tx, must be same as in Uplink Table	Endpoint Rx Antenna Gain (dBi)	2	If using same antenna for Tx, must be same as in Uplink Table
Endpoint Interference (dB)	1	Rise over Thermal Interference	Endpoint Interference (dB)	1	Rise over Thermal Interference
Rx Power at Endpoint (dBm)	-101.91	Compare against Rx sensitivity	Rx Power at Endpoint (dBm)	-112.65	Compare against Rx sensitivity

Uplink Path Loss Calculation		Notes	Uplink Path Loss Calculation		Notes
		Subject to Tx Power Regulations. Can be			Subject to Tx Power Regulations. Can be
Endpoint Tx Power (dBm)	10	different from Collector	Endpoint Tx Power (dBm)	24	different from Collector
Endpoint Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations	Endpoint Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations
Penetration Loss (dB)	-10	For underground vaults, etc.	Penetration Loss (dB)	-10	For underground vaults, etc.
Path Loss (dB)	-120.91	Same as Downlink	Path Loss (dB)	-145.65	Same as Downlink
Shadowing Margin (dB)	16	Same as Downlink	Shadowing Margin (dB)	16	Same as Downlink
		If using same antenna for Tx, must be same			If using same antenna for Tx, must be same
Collector Rx Antenna Gain (dBi)	2	as in Downlink Table	Collector Rx Antenna Gain (dBi)	2	as in Downlink Table
Collector Interference (dB)	2	Rise over Thermal Interference	Collector Interference (dB)	2	Rise over Thermal Interference
Rx Power at Collector (dBm)	-100.91	Compare against Rx sensitivity	Rx Power at Collector (dBm)	-111.65	Compare against Rx sensitivity

RX sensitivity requirements do-able, and less stringent than at 2.4 GHz

Link Budget Analysis, 169 MHz Band

Channel Model Parar	neters	Notes
Frequency (MHz)	169.4	Valid Range 150-2400 MHz
		Hata Valid Range 30-200 m, including terrain.
Collector Antenna Height (m)	10	Erceg Valid Range 10-80m, including terrain
Endpoint Antenna Height (m)	2	Hata Valid Range 1-10 m, Erceg Fixed to 2m.
		Valid Range Hata 1-20 km, Valid Range Erceg
Distance (km)	1	100m-8km
Downlink Path Loss Ca	lculation	Notes
Collector Tx Power (dBm)	27	Subject to Tx Power Regulations
Collector Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations
		Must reference the right path loss from the
Path Loss (dB)	-107.35	Hata or Erceg worksheet
Shadowing Margin (dB)	16	To buffer against variable shadowing loss
Penetration Loss (dB)	-10	For underground vaults, etc.
		If using same antenna for Tx, must be same
Endpoint Rx Antenna Gain (dBi)	2	as in Uplink Table
Endpoint Interference (dB)	1	Rise over Thermal Interference
Rx Power at Endpoint (dBm)	-71.35	Compare against Rx sensitivity

Uplink Path Loss Calc	ulation	Notes
		Subject to Tx Power Regulations. Can be
Endpoint Tx Power (dBm)	27	different from Collector
Endpoint Tx Antenna Gain (dBi)	0	Subject to Tx Power Regulations
Penetration Loss (dB)	-10	For underground vaults, etc.
Path Loss (dB)	-107.35	Same as Downlink
Shadowing Margin (dB)	16	Same as Downlink
		If using same antenna for Tx, must be same
Collector Rx Antenna Gain (dBi)	2	as in Downlink Table
Collector Interference (dB)	2	Rise over Thermal Interference
Rx Power at Collector (dBm)	-70.35	Compare against Rx sensitivity

It gets significantly easier for the 169 MHz band!

169 MHz Mode Analysis

The current modes can fit but with little implementation margin

Cristina Seibert

Proposed Modes at 169 MHz

Mode 1: N/A Mode 2: 25 kbps, h=0.5 Mode 3: 12.5 kbps, h=1

Proposed Properties of TG4k FSK SFD

- A 3-byte pattern (already agreed to in Jacksonville)
- Balanced
- Relatively short strings of 1's or 0's
- Good auto-correlation properties
- Low cross-correlation against preamble
- Low cross-correlation against self image

Candidate SFD Pattern: D6BE4C (hex)

- Candidate SFD pattern
 is: 1101 0110 1011
 1110 0100 1100
- 14 ones, 10 zeros
- Longest run is 5 ones
- Max side-lobe is 2
- Side-lobe RMS is ~ 1.7

Candidate SFD Pattern: 70EED2 (hex)

Best candidate in all categories!

Conclusions

- Link budget analyzed for operation at 433 MHz and 169 MHz bands.
- Low effective path loss makes up for the reduced TX power.
- Some tweaks in the operating modes for the 169 MHz band needed to fit regulatory requirements.
- A 3-byte SFD pattern is proposed: 0111 0000 1110 1110 1101 0010
- The pattern is balanced and can be shown to have good correlation properties.