Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Data transmission at 2.5 Gb/s with THz and IR Signals through Fog]
Date Submitted: [8 November, 2011]
Source: [Lothar Moeller] Company [Alcatel-Lucent]
Address [791 Holmdel-Keyport Rd, Holmdel, 07733, NJ, USA]
Voice:[+1 732 888 7237], FAX: [+1 732 888 7074], E-Mail:[lothar.moeller@alcatel-lucent.com]

[If this is a response to a Call for Contributions, cite the name and date of the Call for Contributions to which this document responds, as well as the relevant item number in the Call for Contributions.]

[Note: Contributions that are not responsive to this section of the template, and contributions which do not address the topic under which they are submitted, may be refused or consigned to the "General Contributions" area.]

Abstract: [We demonstrate weather impact on THz and IR links]

Purpose: [Invited presentation given at meeting]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Data transmission at 2.5 Gb/s with THz and IR Signals through Fog

Lothar Moeller Bell Laboratories / Alcatel-Lucent lothar.moeller@alcatel-lucent.com

Ke Su, John Federici New Jersey Institute of Technology

IEEE 802, November 8, 2011

Talk Outline

- Setup for 2.5 Gb/s @ 625 GHz signaling
- 2.5 Gb/s IR link design
- Fog generation and characterization
- Studying fog impact on THz/IR links
- Conclusions

Three main industrial appl's for THz technology ALU focuses on THz communications as fast growing research area with big potential for commercial applications

Submission

THz Communication demonstrated with electrical and optoelectronic signal processing

- Fully electronic approaches can have cost and SWAP advantages.
 - Optoelectronic setup allows to cover full THz spectral range.

THz Communications in Future:

Modulation, detection and applications of ultra-high speed wireless data signals on THz carriers $f_{carrier} > 100 \text{ GHz} \quad \& \quad R \leq 100 \text{ Gb/s}$

- Reliable communication under different weather conditions.
- Secure signaling (technology advantage), high directivity.
- Potential for ultra-high capacity links.
- Regulations for THz frequency bands need to be established.

J. Federici, L. Moeller, "Review of terahertz and sub-terahertz wireless communications," J. of Applied Physics, 2010.

Simulated THz beams outperform IR links in fog Current research focus on experimental studies of

weather impact on THz and IR links

Submission

Experimental setup

Part I: THz Communication Link

Frequency bands of 2.5 Gb/s @ 625 GHz experiment

doc.: IEEE 802.15-11-0777-00-0thz

Generating narrow bandwidth 2.5 Gb/s baseband signal using Duobinary coding

<11 / 2011 >

Frequency multiplier chain based 1 mW THz source

50 GHz source tuning range.

Simulated atmospheric attenuation.

THz source from Virginia Diodes, Inc. Four doublers and one trippler up-convert a 13 GHz input tone to a 624 GHz output beam.

Box

Zero-biased Schottky diode based 2.5 Gb/s receiver

- In linear region Schottky diode converts as square law detector converting THz signal into baseband.
- Un-modulated THz beam generates about 70 mW output voltage.
- ~ -30 dB voltage coupling loss into 50 Ω amplifiers (video impedance of Schottky diode ~1.5 $k\Omega$)
- Large receiver sensitivity improvement expected after impedance matching using amplifier with high input impedance.

Received eye diagram at high SNR and short PRBS

Experimental setup

Part II: IR Communication Link

Experimental setup

Part III: Fog emulating chamber

<11 / 2011 > doc.: IEEE 802.15-11-0777-00-0thz Comparing weather impact on 2.5 Gb/s THz & IR links Superimposed signals pass same local refraction index variations TH_z RX TH_z TX Free space Weather large area chamber Fog chamber IR TX **IR PD** PID MMF splitter MMF-IR RX BER SSMF RF power PD Scope Slide 18 Ke Su, NJ

Natural and artificial fog appearance

Fog

Collection of suspended water droplet or ice crystals near the earth's surface reducing horizontal visibility < 1km.

Atmospheric Visibility

defined as a distance where collimated light at 550 nm wavelength is attenuated to 5% or (2%) of original power.

Types of Fog	Drop Size	Water Content	Formation
Advection fog	20µm	>0.20g/m3	Coastal fog
Radiation fog	4µm	0.01-01 g/m3	Inland

Artificial fog

generated by dripping liquid Nitrogen into a cup filled with hot water (\sim 80 °C). Measured average particle diameter \sim 8µm.

Particle size / wavelength ratio determines dominant type of scattering

Scattering	Size parameter	Description
Rayleigh Scattering	<i>a</i> <<1	Particle size is much smaller than the wavelength
Mie Scattering	(0.1 ~50) <i>a</i> ≈ 1	Particle size is comparable in size to the wavelength
Nonselective scattering (Geometric Scattering)	<i>a</i> >>1	Particle size is much larger than the wavelength
$2\pi r$	r = radius of the particle	

 $a = \frac{2\lambda r}{\lambda}$ λ = wavelength of radiation

Scattering at 625 GHz and 1.5 um (IR) with fog particle sizes (1-20 μ m)

Attenuation and BERs for THz & IR links

Kim model* for estimating visibility in fog chamber

*Kim, I., B. McArthur, and E. Korevaar. "Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for opt. wireless communications." in Proc. SPIE 2001.

Comparison of THz experimental and theoretical specific attenuation at different visibilities using Double-Debye model*

* H.J. Liebe et al.,"A model for the complex permittivity of water at frequencies below 1THz," Int. J. of Infrared and Millimeter Waves, Vol. 12, No. 7, 1991.

Scintillation effects in Fog chamber impact IR link

Scintillation Effects

Pointer A: Fluctuations PD_1 >> PD_2 & RX power const.

Humidity impact

Pointers C and D:

IR attenuation ~ 0 & attenuation THz ~ 0.1dB -> Conversion of fog into humidity

Unstable operation of PID loop

Pointer B:

small kinks indicate fast changing attenuation than controller bandwidth

Conclusions

- THz signaling can have propagation advantages under fog conditions compared to IR links.
- Demonstration of error-free 2.5 Gb/s (SDH 16) transmission over lab distance at 625 GHz using a 1mW THz source.
- Duodinary modulation yields compact baseband spectrum thin enough to fit through the resonance of THz source.
- Developed setup that allows studying THz and IR links propagating at the same time the same fog cloud.
- Fog degrades THz link much less than IR link error free operation possible when IR link has collapsed.
- Scintillation effects in IR link observed.