IEEE P802.15
 Wireless Personal Area Networks

Project	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Title	Comment Resolution for CID 36
Date Submitted	November 1 ${ }^{\text {st }} 2011$
Source	[Cristina Seibert, Silver Spring Networks] [Alina Liru Lu, NICT]
Rhurram Waheed, Freescale]	
E-mail:[cseibert @ silverspringnet.com]	
Abstract	This document presents examples of the processing to generate MR-FSK packets.
Purpose	Proposed resolution for Comment ID 36 (CID 261 in initial sponsor ballot)
Notice	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Proposed resolution to CID 36 (CID 261 of the initial sponsor ballot): Revised. Create Annex M as shown below.

Annex M
 (informative)
 Examples of encoding a packet for the MR-FSK PHY

M. 1 Introduction

The purpose of this annex is to show examples of encoding a packet for the MR-FSK PHY, as described in 16.1, for a variety of use-case scenarios. For each scenario, the settings of the PIB attributes are shown along with the output PPDU bit sequences.

For all examples up to M.8, the modulation type is filtered 2FSK. The example in M. 8 uses filtered 4FSK modulation, and the example in M. 9 uses mode switching from filtered 2FSK modulation to filtered 4FSK modulation.

In all examples the message encoded is a PSDU of 7 octets shown below. The message constitutes an acknowledgment frame with a 3 -octet MHR and a 4 -octet FCS, as defined in 5.2.1.9. The bit sequence of the example PSDU is: 01000000000000000101011001011101001010011111101000101000

M. 2 Example with NRNSC FEC enabled, no data whitening

<This example is per what is captured in document 717 rev1, with adjustments on text formatting for consistency with the second example included here. Make adjustments per the draft changes from d5 to d6, e.g. remove line containing the attribute phyFSKFECInterleaving .>

M. 3 Example with NRNSC FEC enabled and data whitening enabled

M.3.1 Settings

For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD $=0$
phyFSKFECEnabled $=$ TRUE
phyFSKFECScheme=0
phyFSKScramblePSDU=TRUE

M.3.2 Generation of the SHR

The bit sequence of the SHR, consisting of four preamble octets and two SFD octets, is given as 010101010101010101010101010101010110111101001110

M.3.3 Generation of the PHR

The Mode Switch (MS) field is set to (0) (no mode switch), the Reserved field entries are set to (0,0), the FCS Type (FCS) field is set to (0) corresponding to a 4-octet FCS, the Data Whitening (DW) field is set to (1) (data whitening
is used), and the Frame Length field entries are set to the binary representation of "7," corresponding to the PSDU length of the packet. The complete PHR field is shown in Table M. 1

Table M. 1 - PHR for MR-FSK

Bit string index	0	$1-2$	3	4	$5-15$
Bit mapping	MS	$\mathrm{R}_{1}-\mathrm{R}_{0}$	FCS	DW	$\mathrm{L}_{10}-\mathrm{L}_{0}$
Field name	Mode Switch	Reserved	FCS Type	Data Whitening	Frame Length
Value	0	00	0	1	00000000111

M.3.4 The message

As given in M. 1 the bit sequence of the example PSDU is:
01000000000000000101011001011101001010011111101000101000

M.3.5 Concatenating the PHR, PSDU, tail bits, and pad bits

Concatenation of the PHR, PSDU, tail bits, and pad bits is performed as described in 16.1.2.4. After concatenation the bit sequence is given as

00001000000001110100000000000000010101100101110100101001111110100010100000001011

M.3.6 Encoding of the bit sequence

Convolutional coding is performed as described in 16.1.2.4. The bit sequence after convolutional coding is given as
111111110010000011111111111000110100001000011111111111111111111111100101101111001
11111011101010000100111011010011011001010110000100000010110100001111111100101110

M.3.7 Interleaving of the bit sequence

Interleaving is performed as described in 16.1.2.5. The bit sequence after interleaving is given as
10110011011100110011101111110011111111001111110111111100111100100011011110101010
10111100101101110101111000010011101001000101110110110010111100001011010000111100

M.3.8 Bit sequence after data whitening of the PSDU

Data whitening of the PSDU is performed as described in 16.1.3. The bit sequence after data whitening is given as

```
1011001101110011001110111111 00111111001110001101010011111001 110101110100001100010
1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 ~
```


M.3.9 Concatenating the SHR with the PHR and PSDU

The bit sequence for the PPDU is given as
01010101010101010101010101010101011011110100111010110011011100110011101111110011 11110011100011010100111110011101011101000011001011110100000110011110001010000100 100111000100000001100001001001000001010001101001

M. 4 Examples with RSC FEC enabled and data whitening enabled

For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD $=0$
phyFSKFECEnabled $=$ TRUE
phyFSKFECScheme=1
phyFSKScramblePSDU=TRUE

M.4.1 Interleaving enabled

For this example, phyFSKFECInterleavingRSC = TRUE
The bit sequence for the PPDU is given as:
< Note to the editors: for the remaining examples in this document, please format the PPDU as per the format shown in example M.3.9 >

Columns 1 through 15

$\begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}$	0	1	0	1	0	1		1
Columns 16 through 30								
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}$	1	0	1	0	1	0		0
Columns 31 through 45								
$\begin{array}{lllllll}0 & 1 & 0 & 1 & 1 & 0\end{array}$	1	1	1	1	0	1		0
Columns 46 through 60								
$0 \quad 1 \quad 10$	0	0	0	0	0	1		1
Columns 61 through 75								
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1\end{array}$	1	0	1	0	0	0		0
Columns 76 through 90								
$\begin{array}{lllllll}0 & 1 & 1 & 0 & 0 & 1\end{array}$	0	1	0	0	1	0		1
Columns 91 through 105								
$\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & 0\end{array}$	1	0	1	1	0	0		0
Columns 106 through 120								
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1	1	0	0	1	0	0	0
Columns 121 through 135								
$\begin{array}{llllll}0 & 0 & 1 & 1 & 1\end{array}$	0	0	0	0	0	1		1
Columns 136 through 150								
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$	1	1	0	1	0	1	0	1
Columns 151 through 165								
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0\end{array}$	1	1	0	0	1	0		0
Columns 166 through 180								
$\begin{array}{llllll}0 & 0 & 0 & 1 & 1\end{array}$	0	1	0	0	1	1		0
Columns 181 through 195								
$\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 0\end{array}$	0	1	1	1	1	1		0
$\begin{array}{ccccccc}\text { Columns } & 196 & \text { through } 208 \\ 1 & 0 & 0 & 1 & 0 & 1\end{array}$								

M.4.2 Interleaving disabled

For this example, phyFSKFECInterleavingRSC $=$ FALSE
The bit sequence for the PPDU is given as:

Columns 1 through 15

M. 5 Examples with RSC FEC enabled and data whitening disabled

For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD $=0$
phyFSKFECEnabled $=$ TRUE
phyFSKFECScheme=1
phyFSKScramblePSDU=FALSE

M.5.1 Interleaving disabled

For this example, phyFSKFECInterleavingRSC = FALSE
The bit sequence for the PPDU is given as:

```
Columns 1 through 15
    0
Columns 16 through 30
    1
Columns 31 through 45
    0
```


M.5.2 Interleaving enabled

For this example, phyFSKFECInterleavingRSC $=$ TRUE
Columns 1 through 17

M. 6 Example with FEC disabled and data whitening disabled

For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD $=0$
phyFSKFECEnabled $=$ FALSE
phyFSKFECScheme=N/A
phyFSKScramblePSDU=FALSE

The bit sequence for the PPDU is given as:

Columns 1 through 17										
$\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 1\end{array}$	0	1	0	1	0	1	0	1	0	0
Columns 18 through 34										
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}$	1	0	1	0	1	0	1	0	1	
Columns 35 through 51										
$\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0\end{array}$	0	1	0	0	1	1	1	0	0	0
Columns 52 through 68										
$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	0	0	0	0	1	1	1	0	1	
Columns 69 through 85										
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$	0	0	0	0	0	0	0	1	0	
Columns 86 through 102										
$\begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}$	1	1	1	0	1	0	0	1	0	
Columns 103 through 119										
$\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 1\end{array}$	1	0	1	0	0	0	1	0	1	
Column 120										
0										

M. 7 Example with FEC disabled and data whitening enabled

For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD $=0$
phyFSKFECEnabled $=$ FALSE phyFSKFECScheme=N/A
phyFSKScramblePSDU=TRUE

The bit sequence for the PPDU is given as:


```
    1
Column 120
    1
```


M. 8 Example with filtered 4FSK, FEC and data whitening disabled

```
For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD \(=0\)
phyFSKFECEnabled \(=\) FALSE
phyFSKFECScheme=N/A
phyFSKScramblePSDU=FALSE
```

The bit sequence for the PPDU is given as:

M. 9 Example of Mode Switch, FEC and data whitening disabled

For this example, selected PIB attributes are set as follows:
phyFSKPreambleLength=4
phyMRFSKSFD $=0$
phyFSKFECEnabled $=$ FALSE
phyFSKFECScheme=N/A
phyFSKScramblePSDU=FALSE
In the example, mode switch is used, to switch from filtered 2FSK to filtered 4FSK.

The ModeSwitchParameterEntry (see Figure 106) is assumed to be 0 , and the elements of the corresponding ModeSwitchDescriptor (see Tables 124 and 71b) are assumed to be as follows:

- the SettlingDelay is 0
- the SecondaryFSKPreambleLength is 4
- the SecondaryFSKSFD is TRUE.

The NewMode (see Figure 107) is set as follows:

- Page is 0 (channel page seven)
- ModulationScheme is 0 (filtered FSK)
- \quad Mode $=3$ (Operating mode \#4 using filtered 4-FSK)

The bit sequence is given as:

