September 2011

doc.: IEEE 15-11-0639-00-004g

Proposed Comment Resolution for CID # 187 (MR-O-QPSK PHY)

Michael Schmidt- ATMEL

September 19, 2011

IEEE P802.15 Wireless Personal Area Networks

Title:	Proposed Comment Resolution for CID $\#$ 187 (MR-O-QPSK PHY)
Date Submitted:	September 19, 2011
Source:	Michael Schmidt - Atmel (email: michael.schmidt@atmel.com)
Re:	Task Group 15.4g sponsor ballot comment resolution
Abstract:	Proposed comment resolution for CID #187 (MR-O-QPSK PHY)
Notice:	This document has been prepared to assist the IEEE P802.15.
	It is offered as a basis for discussion and is not binding on the
	contributing individual(s) or organization(s). The material in this
	document is subject to change in form and content after further
	study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release:	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

CID 187

Comment:

The commenter states: "O-QPSK has two modes: Minimum FSK and Offset QPSK using raised-cosine pulse shaping. Usually, root-raised cosine pulse shaping is used for reducing ISI. Using raised-cosine instead of root-raised cosine can worsen ISI. Also, it is unclear how differential detection can be used for offset-QPSK, where the phase changes half-way through any symbol duration. Either coherent or non-coherent detection is possible for Minimum FSK."

The commenter proposes the following:

"Use the root-raised cosine (RCS) pulse shaping instead of the raised cosine. Check the feasibility of differential QPSK in the context of offset QPSK. If it is not feasible, suggest/mandate the use of coherent demodulation for the RCS based offset-QPSK."

Response:

Reject. No change required.

Cont. CID 187

Response:

 It is well-known, that a raised-cosine impulse is a so called Nyquist-impulse. Any Nyquist-impulse g_T meets the first Nyquist criteria with respect to the symbol time parameter T ∈ ℝ :

$$g_{\mathcal{T}}(k\mathcal{T})=0 ext{ for } k\in\mathbb{Z}-\{0\} ext{ and } t\in\mathbb{R}$$
 (1)

 Hence, there is no inter symbol interference (ISI) caused by a raised cosine impulse. September 2011

Cont. CID 187

- A root-raised cosine impulse is a so called $\sqrt{Nyquist}$ -impulse. For a $\sqrt{Nyquist}$ -impulse g_T , equation (1) is not necessarily met, i.e. there is usually ISI. However, equation (1) is met for the auto-correlation function of g_T . This reflects the overall impulse response in conjunction with optimal receive filtering matched to g_T .
- ► In TG4g, the receive filter is left unspecified. In the context of the transmitter accuracy specification (EVM) it is, therefore, reasonable to specify a transmit Nyquist-impulse rather than a √Nyquist-impulse.
- Note that a raised-cosine filter is also used for the O-QPSK PHY operating at the 780 MHz band and the BPSK PHY operating in the 868 MHz and 915 MHz band according to Std IEEE 802.15.4-2011.

doc.: IEEE 15-11-0639-00-004g

September 2011

Cont. CID 187

- There is no Minimum FSK mode specified for the MR-O-QPSK PHY. What is specified is O-QPSK with either half-sine shaping (915 MHz and 2450 MHz band) and raised-cosine shaping (470 MHz, 868 MHz, 780 MHz, 917 MHz, and 950 MHz band).
- O-QPSK with half-sine shaping is similar to an MSK signal but it is not equivalent (see Appendix).

September 2011

Cont. CID 187

- Regardless of the shaping impulse used, non-coherent differential demodulation is not always applicable to an O-QPSK signal sequence.
- In conjunction with code spreading, a differential demodulation is feasible in some cases by decorrelating against a transformed code set of the spreading code words. This strongly depends on the code set used for bit-to-chip mapping. However, it is not recommended or a target of the MR-O-QPSK PHY to perform differential demodulation at the chip level, due to noise enhancement and /or multi-path enhancement.
- ▶ For (N, 1)-DSSS with N > 1, bit-differential encoding (BDE) is introduced at the bit-level (rather than at the chip level) in order to support differential demodulation <u>after</u> de-spreading.

Appendix

For a continuous phase signal with modulation index h

$$x(t) = \exp\left[j\pi h \sum_{k=0}^{\infty} \alpha(k)q(t-kT)
ight]$$
 with $\alpha(k) \in \{-1,1\}$

the well-known approximation

$$\hat{x}(t) = \sum_{k=0}^{\infty} \exp\left[j\pi h \sum_{\ell=0}^{k} \alpha(\ell)\right] c_0(t-kT)$$

delivers a linear model for x, which is based on the main Laurent-impulse c_0 . For h = 1/2 this simplifies to

$$\hat{x}(t) = \sum_{k} j^{k} \beta(k) c_{0}(t - kT)$$

with

$$\beta(k) = \beta(k-1)\alpha(k)$$
(2)

Cont. Appendix

- Equation (2) shows that an MSK signal obtains a recursive part on the data (chip) stream, whereas an O-QPSK signal (as specified in IEEE P802.15.4g/D5, page 114 line 51) does not¹.
- Equation (2) also reflects some difference on the nature of the signal. An MSK signal obtains a (chip) differential encoder and consequently implicitly supports (chip) differential demodulation.
- For the MR-O-QPSK PHY a differential encoder is deliberately introduced by BDE in conjunction with (N,1)-DSSS. However, it is introduced at the bit level rather than at the chip level in order to exploit the processing gain.

¹In order to apply an MSK (direct) modulator for O-QPSK transmission with half-sine shaping, the recursive part must be removed by pre-coding the data (chip) sequence.