Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Research, development and testbed on Smart Utility Networks by IEEE standard]

Date Submitted: [Sep. 18, 2011]

Source: [Fumihide Kojima¹, Hiroshi Harada¹]

Company [¹NICT]

Address [13-4, Hikari-no-oka, Yokosuka-shi, Kanagawa239-0847, Japan]

Voice:[1+81-46-847-5074]

FAX: [1+81-46-847-5440]

E-Mail:[{f-kojima,harada}@nict.go.jp]

Re: [In response to TG4g Call for Proposals]

Abstract: [Tutorial presentation on Sep. 19]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Research, development and testbed on Smart Utility Networks by IEEE standard

Fumihide KOJIMA and Hiroshi HARADA

Wireless Network Research Institute, Smart Wireless Laboratory

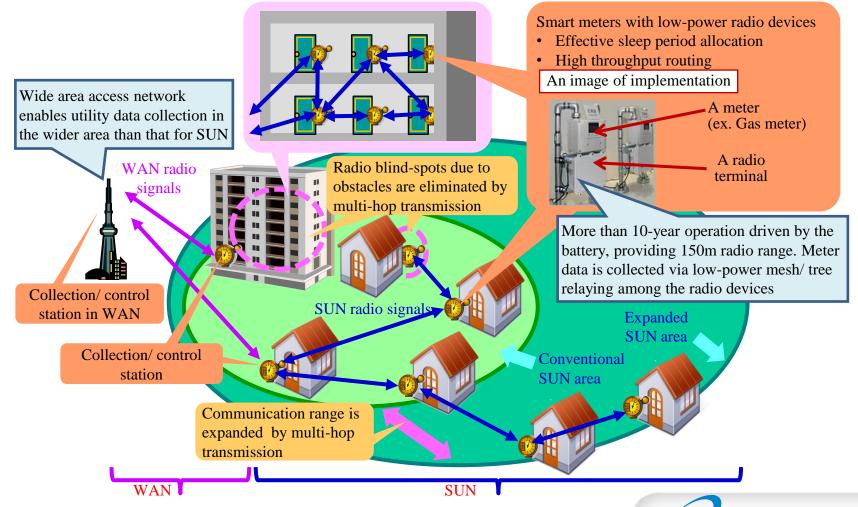
NICT

E-mail: {f-kojima,harada}@nict.go.jp

IEEE 802 Wireless Interim Meeting 19 September 2011 Okinawa, JAPAN

Summary

- This presentation summarizes NICT's R & D activities on Smart Utility Networks as in the following topics:
 - Outline of Smart Utility Networks
 - Use image consisting of SUN-part and WAN-part
 - SUN requirements
 SUN requireme
 - Long-lived capability
 - Service area expansion
 - Further requirements
 - SUN-part activities
 - Japanese trend on IEEE 802.15.4g standardization
 - Non FH PHY with MPM
 - New allocation in 920 MHz band
 - Low energy support
 - ▷ NICT's activities to realize SUN
 - Proposal on long-lived multi-hop network
 - IEEE 802 15.4g terminal development and proof test
 - WAN-part activities
 - ▷ NICT's activities to realize WAN
 - Cognitive radio router for advanced WAN
 - Wide area testbed by employing large number of routers
 - Operation in disaster situation
 - Conclusions



Outline of Smart Utility Networks

Use image of SUN

- Electricity/Gas/Water meters equipping SUN radio devices can effectively automatically relay data frames to the collection station by expanding its service area
- SUN structure includes SUN-part for local data exchange and WAN-part for data collection and control

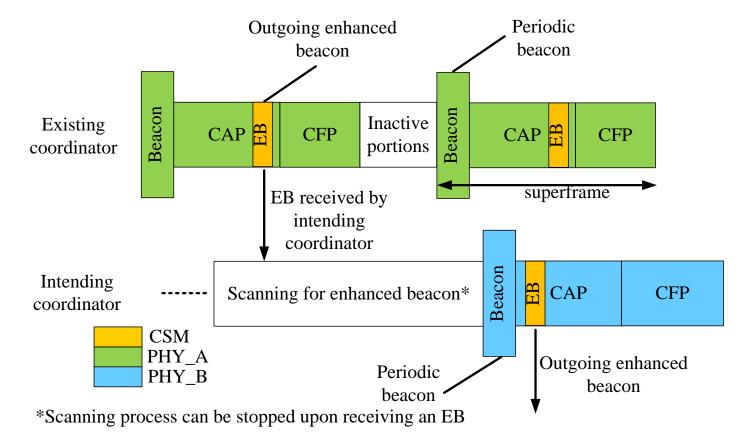
SUN requirements

- SUN requirements are considered as following:
 - Basic requirements
 - □ Long-lived performance
 - More than 10 years operation driven by battery
 - ▷ Service area expansion
 - Multi-hop transmission
 - Further requirements
 - Potential control by the internet/cloud
 - To realize effective energy consumption according to the situations
 - To realize terminal mobility support and easy installation
 - - To increase system capacity against rapidly increasing demands
 - Enhancement by Cognitive radio and TV white space
 - - Capability of long-lived and robust radio infrastructure considering the power supply restricted situations

SUN-part activities

Japanese trend in IEEE 802.15.4g (1): Current PHY spec.

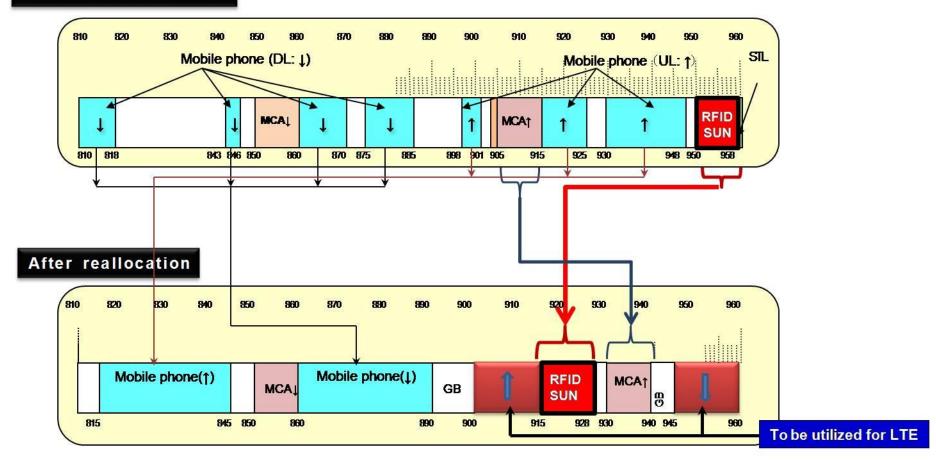
Non-FH PHY owing to restricted number of frequency channels


MR-FSK allocation in 950-958 MHz (Japan)				
	Mandatory #1	Mandatory #2	Optional #1	Optional #2
Data rate (kbps)	50	100	200	400
Modulation	Filtered 2FSK	Filtered 2FSK	Filtered 2FSK	Filtered 4FSK
Modulation index	1.0	1.0	1.0	0.33
Channel Spacing	200 kHz	400 kHz	600 kHz	600 kHz

- Two octet FCS employment to support short data frame
- SFD indication of FEC

Japanese trend in IEEE 802.15.4g (2): MPM

 In order to realize coexistence among several PHY, Multi-Physical layer Management (MPM) that employs Common Signaling Mode (CSM) is employed



Japanese trend in IEEE 802.15.4g (3): Future channel plan #1

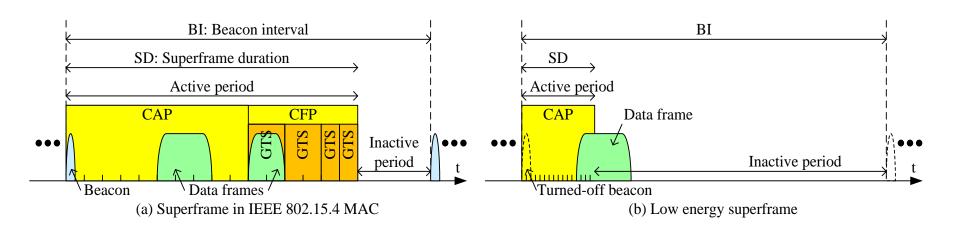
 Frequency band for sensor networks including SUN, smart meters, etc. will be moved from 950MHz band to 920MHz band (915MHz - 930MHz)

* Details are summarized in doc.: IEEE 802.15-04-0510-004g

Current band allocation

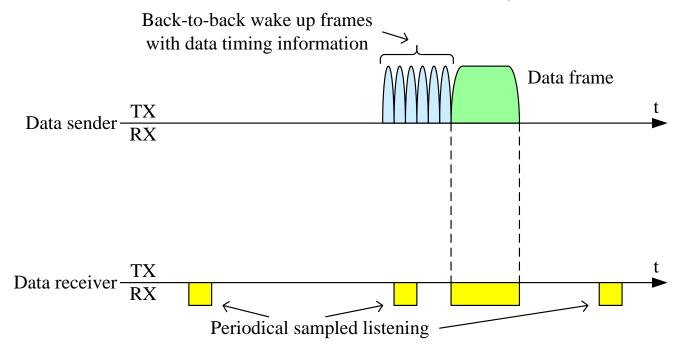
Japanese trend in IEEE 802.15.4g (4): Future channel plan #2

	950 MHz band	920 MHz band
Frequency band	950MHz – 958MHz	915MHz – 930MHz
Output power	10mW / 1mW	250mW / 20mW / 1mW
Other change	Spectrum mask and sending control are also revised according to the new regulations	

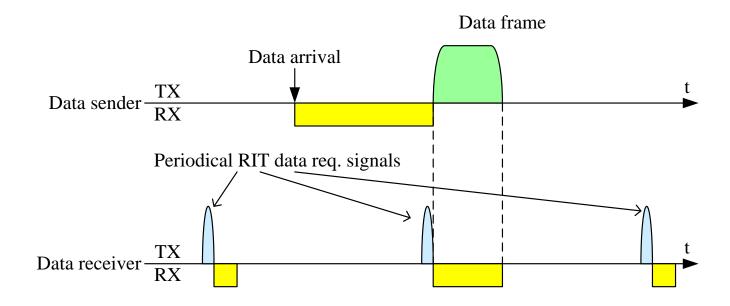

Japanese trend in IEEE 802.15.4g (5): Low energy support #1

- In order to realize long-lived performance, MAC oriented low energy technologies are to be employed
 - By modification of superframe structure
 - By newly define MAC protcols
 - CSL (Coordinated Sampled Listening)

Japanese trend in IEEE 802.15.4g (6): Low energy support #2


- LE superframe
 - Low energy performance in beacon-enabled PAN exploiting:
 - □ Turned-off beacons
 - □ Inactive periods

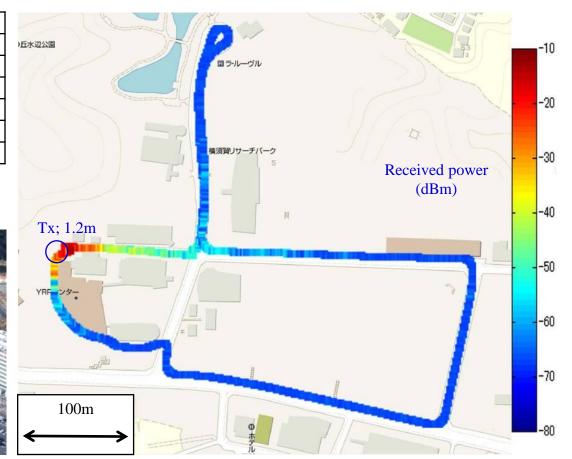
Japanese trend in IEEE 802.15.4g (7): Low energy support #3


- CSL
 - Periodical short listening
 - Short and back-to-back short wake up frames before transmitted frames
 - Wake up frame indicates the following data frame timing

Japanese trend in IEEE 802.15.4g (8): Low energy support #4

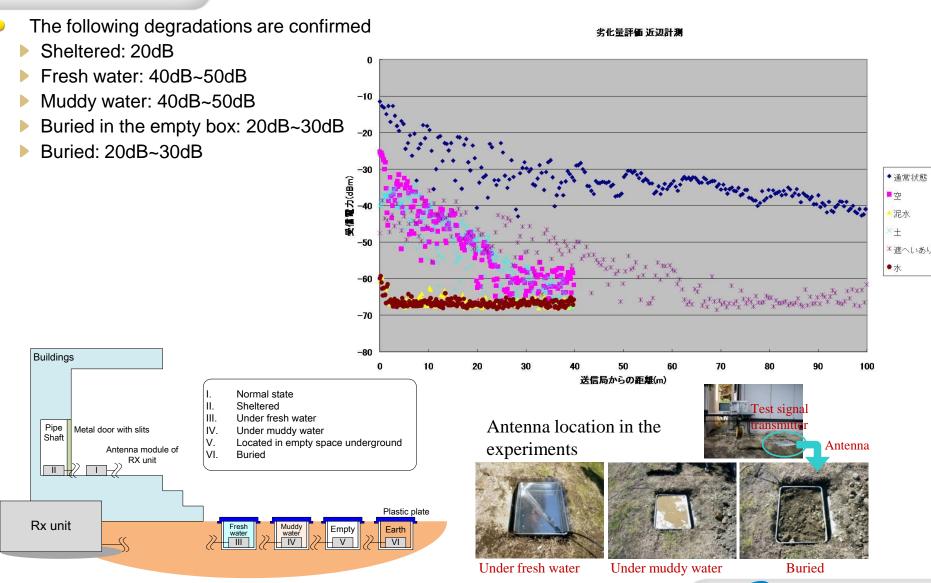
- RIT
 - Periodical broadcasting of RIT data request command for synchronization
 - Data frame transmission is synchronized with that RIT data request

NICT's R&D on SUN(1): Outline


- Basic study on effective frequency utilization for AMI in the MIC technical testing project
 - 400 MHz and 950 MHz
- Communication scheme with low-power consumption and higher throughput supporting flexible relay & routing by multi-hop transmission
 - Proposal on IEEE 802.15.4g
- Development of SUN radio terminal thereby conducting proof test

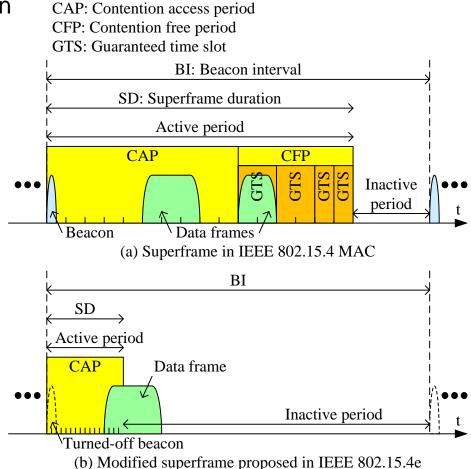
NICT's R&D on SUN(2): Radio propagation evaluation

 With 10 mW transmission power, service area radius of 200 m with more than -60 dBm received power is obtained


Center frequency	953.0MHz
Transmission power	10mW
Antenna gain	2.15dBi
Antenna height	1.2m
Modulation scheme	BPSK
Signal bandwidth	768kHz
Symbol rate	312.5kbps

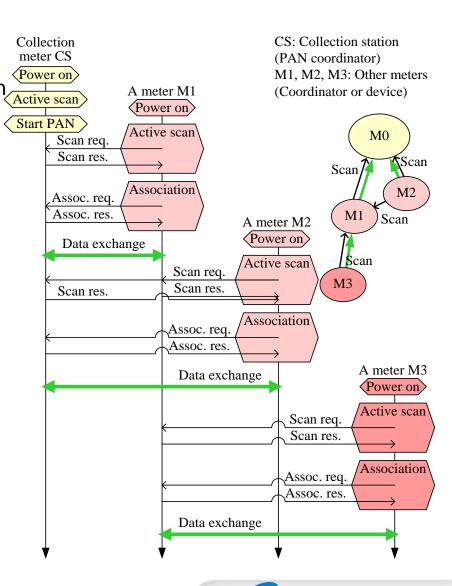
Experimental area

NICT's R&D on SUN(3): Antenna location degradations



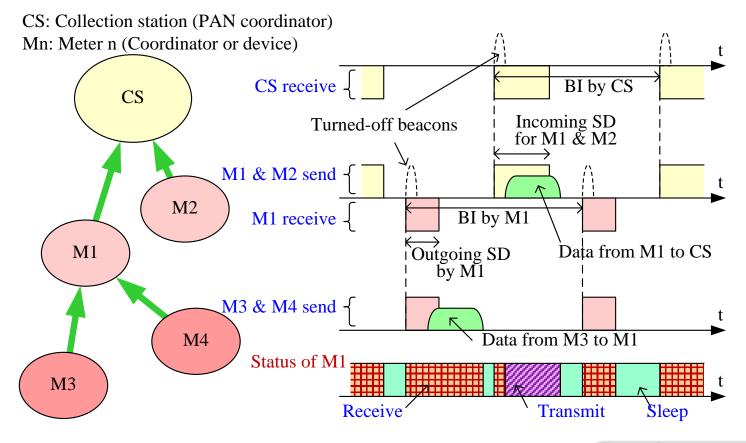
18

NICT's R&D on SUN(4): Superframes


Data receiving in the inactive period can improve low-power consumption performance

- FFD can define superframe consists of an active period and an inactive period indicated by periodical beacons
- Turned-off beacons with active period
 - Holding BI based TDMA
 - Beacon is sent on demand by scan request or synchronization request
- Intermittent hearing only in AP
 - Active period consists of only CAP
 - Data frame shall begin in AP and finish before next AP
 - Only receiver continues receiving till the frame end
 - Reduced AP where all devices are awake and standing-by

NICT's R&D on SUN(5): Assumed tree topology


- After power-on
 - The collection station CS makes a PAN by determining PAN ID and superframe duration
 - Meters M1, M2 and M3 conduct active scan to find the other meter that is a coordinator connected to the collection meter, then tries to associate the one
 - Which coordinator to be selected?
 - □ The coordinator with the shortest hop number to the collection meter
 - The coordinator returns a responsesignal with the highest received power among the candidates having the same hop number
- After association
 - The already associated FFD can return response to the active scan request by defining outgoing superframe
 - Such associated FFD can further accept the association request by unassociated meters

NICT's R&D on SUN(6): Example of frame relaying

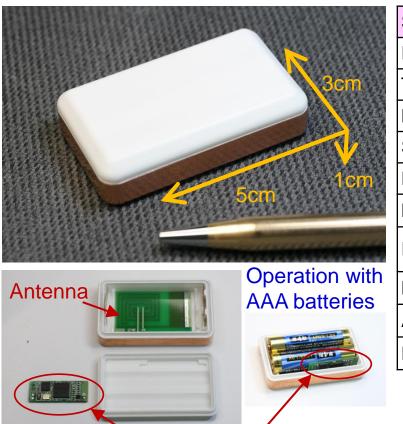
- Meters construct tree-shaped topology where each device determines superframe with turned-off beacon
 - In the figure below, a meter M1 is handling both incoming superframe by CS and outgoing superframe by M1 itself in order to conduct successful data relaying in such tree topology

NICT's R&D on SUN(7): SUN radio terminal development

SUN radio terminal development in 3 phases

- Phase 1: Basic small long-lived terminal
 - First prototype of small terminal
 - Original specifications are employed

- Phase 2: Test terminal for PHY/MAC investigation
- Basic PHY/MAC investigation assuming standard


- Phase 3: IEEE draft compliant SUN terminal
 - ▶ IEEE draft compliant PHY/MAC
 - Proof test including connection with meter/sensor

NICT's R&D on SUN(8): Basic small long-lived terminal

- Small long-lived terminal driven by AAA batteries
- Original specifications

Radio circuit board

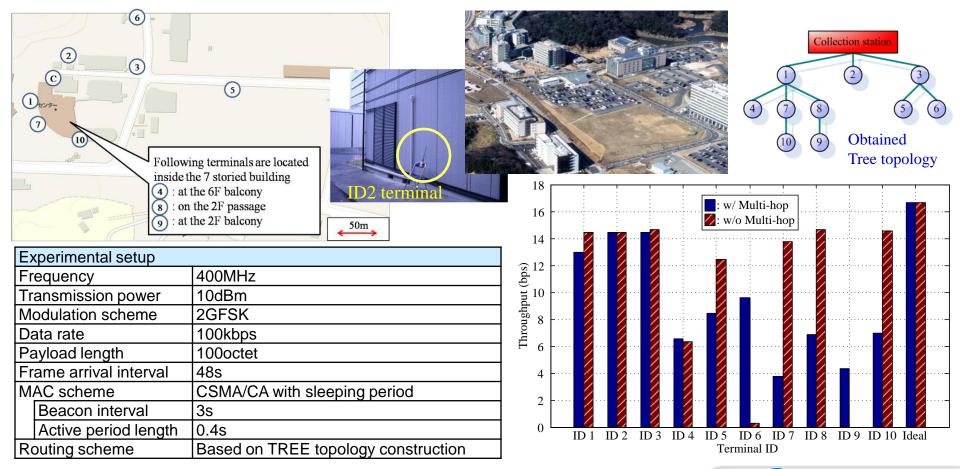
Specifications	
Frequency band	400 MHz
Transmission power	Max 10dBm (antenna input power)
Modulation scheme	2GFSK
Signal bandwidth	32 kHz
Data rate	19.2 kbps
MAC scheme	CSMA/CA with sleeping period
Routing scheme	Based on autonomous TREE topology construction
Beacon interval	1s
Active period	3.5ms
Data frame length	12.5ms

NICT's R&D on SUN(9): Test terminal for PHY/MAC investigation #1

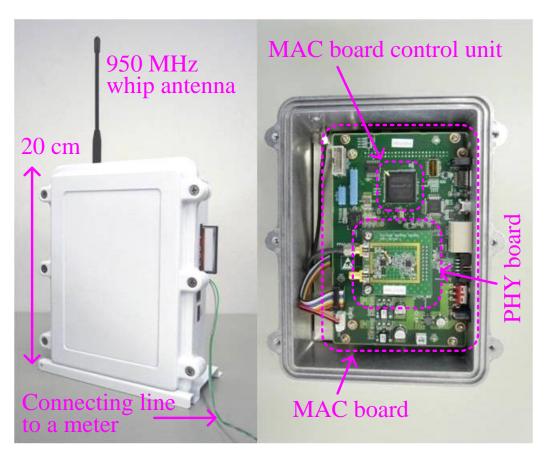
- Experimental system for detailed PHY/MAC investigation assuming IEEE 802.15.4g standard
- Basic evaluations of active/inactive period employment

Relay and routing control for data frames

All-purpose terminal that enables detailed examination of the PHY/MAC parameters


Reduced function small terminal (Only 2GFSK on 400MHz band)

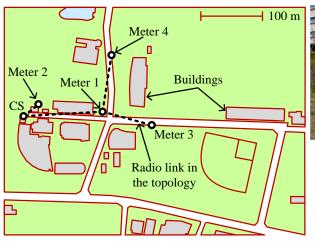
	All-purposed terminal	Reduced function small terminal
Frequency	400/950MHz	400MHz
Transmission power	10dBm	
Diversity	Selective diversity on receiver	No diversity
Modulation scheme	2GFSK/4GFSK	2GFSK
Data rate	50/100/200/400kbps	50/100/200kbps
Payload length	~1500octet	
MAC scheme	CSMA/CA with sleeping period	
Routing scheme	Based on autonomous TREE topology construction	


NICT's R&D on SUN(10): Test terminal for PHY/MAC investigation #2

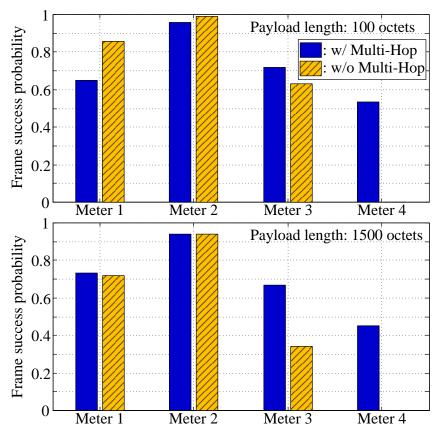
 Data frame collection experiments using ten small terminals are conducted. Autonomously constructed tree topology with multi-hop transmission enables frames from all terminals to reach the collection node. On the other hand, star topology with only direct transmission fails that in case of terminals under severe locations

NICT's R&D on SUN(11): IEEE draft compliant SUN terminal #1

- IEEE802.15.4g/4e draft compliant radio terminal
- LE-Superframe
- Proof test with meter/sensor connected



Specifications	
Frequency	953MHz
Transmission power	10dBm
Modulation scheme	2GFSK
Data rate	50/100/200kbps
Payload length	~1500octet
MAC scheme	IEEE 802.15.4e
Routing scheme	TREE routing

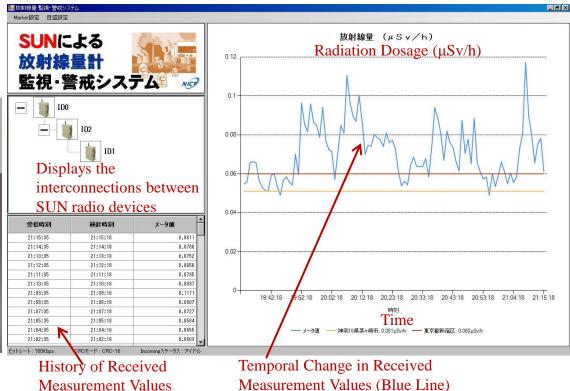

NICT's R&D on SUN(12): IEEE draft compliant SUN terminal #2

 Service area expansion by multi-hop transmission are confirmed where up to 1500 octet data frames are exchanged

Experimental setup	
Frequency	953MHz
Transmission power	10dBm
Modulation scheme	2GFSK
Data rate	100kbps
Payload length	100/1500 octet
Frame arrival interval	60s
MAC scheme	IEEE 802.15.4e
Beacon interval	9.83s (BO=10)
Active period length	76.8ms (SO = 3)
Routing scheme	TREE routing

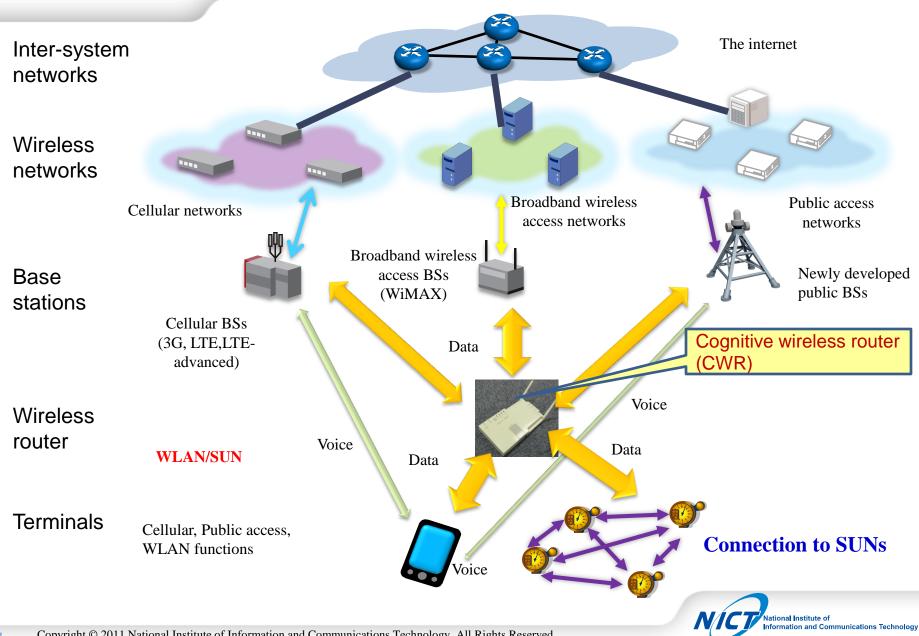
NICT's R&D on SUN(13): SUN applications with meter/sensor #1

 Meters connected SUN terminals that realizes effective metering data correction with visualizing energy consumption

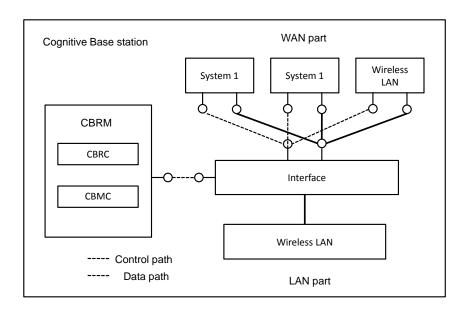


NICT's R&D on SUN(14): SUN applications with meter/sensor #2

- Dosimeters connected SUN terminals monitoring radiation dosage results
 - ▶ Effective monitoring of radioactive contamination in the areas surrounding nuclear power plants due to incidents caused by major earthquakes



WAN-part activities


NICT's R&D on WAN(1): WAN overview

NICT's R&D on WAN(2): Cognitive wireless router (CWR)

- Cognitive base station for mobile wireless router (Press released on March 3, 2009)
 - Accommodates several RAN connection methods (WiFi, HSDPA, WiMAX, PHS, etc.)
 - Provides Internet connection to users behaving as a WLAN access point
 - Provides spectrum sensing information to network reconfiguration manager (NRM)
 - Chooses the best RAN in terms of user's preferences according to sensing information and network policy from NRM
 - Includes IEEE 1900.4 architecture that has been contributed by NICT
 - This is the world-first prototype that includes IEEE 1900.4 based cognitive function proposed by NICT for heterogeneous network connections

item	Specification	
Sensing part		
Sensing frequency band	Dependent on communication systems connected via USB port (e.g. PHS, WiMAX, 3GPP, 3GPP2)	
Wide Area Network part		
Supported communication systems	PHS, WiMAX, 3GPP, 3GPP2	
Radio access network (RAN) selection framework	IEEE 1900.4 compliance	
Local Area Network part		
Communication frequency band	2400M~2497MHz	
Communication bandwidth	20 MHz	
PHY	OFDM (52 carrier, 48 data subcarriers, 4 pilot subcariier)	
PHY frame format	802.11a compliance	
MAC protocol	802.11a based MAC	
Output power	Maximum 10 dBm	

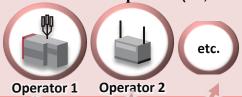
NICT's R&D on WAN(3): A cognitive wireless network

Refugee list, message board

Information for living

VoIP connection (Skype etc.)

CONTROL COGNITIVE ROUTER


Communicated by

IEEE 1900.4

standard

Cognitive router can communicate with server that includes network reconfiguration manager (NRM). NRM can check status of the router and network operators. NRM can select the best network operators adequate from the viewpoint of network side.

Mobile Network Operator (3G, HSPA)

Cognitive network server includes Network Reconfiguration Manager in NICT Yokosuka

COGNITIVE WIRELESS ROUTER

- Access area:50~100m
- Power supply: AC, Battery

- Network reconfiguration management (NRM) server
- Authentication serve
- ■NRM database
- ■Authentication database
- □ Web server
- ■Mail server
- ■Monitoring server

Terminal in evacuation area User's terminal

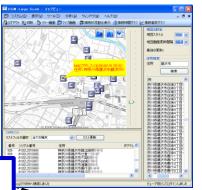
NICT's R&D on WAN(4): Wide area wireless testbed

About 500 cognitive wireless routers are located in Fujisawa city, which are available for all people having WLAN cards

Tokvo

Reports from cognitive wireless routers are stored in the management systems, which controls suitable resource allocation for the routers

Universities, museums, schools, restaurants, hospitals, shopping-malls and sports-centers


NICT proposing radio resource management scheme is operational

<u>Yokosuka city</u>

Management systems

Network Reconfiguration Manager in NICT Yokosuka

- Network reconfiguration management (NRM) server
- Authentication serve
- ■NRM database
- ■Authentication database
- □ Web server
- ■Mail server
- ■Monitoring serve

Called for users who use the router with their own PC

> Status of cognitive wireless routers can be monitored by a viewer from the Internet

NICT's R&D on WAN(5): CWRs have been launching in the disaster places by earthquake

As of Sep. 17 Iwate 秋田県 today. All cognitive Morioka routers are connected a Otsuchi cognitive network server in NICT 28 in IWATE, 17 Yokosuka in MIYAGI, 23 Ofunato Cognitive network server includes in FUKUSHIMA, 気仙沼 **Network Reconfiguration Manager in** 68 cognitive Kesennuma **NICT Yokosuka** 仙台 wireless Sendai routers are Ishinomaki operational Fukushima **Iwate** Miyagi いわぎ lwaki. **Fukushima**

Cognitive wireless routers have been installed in disaster place since April 2011. The routers and its supported cognitive wireless network have been operated without any trouble as of

Launched cognitive router

Conclusions

- This presentation summarizes NICT's R & D activities on Smart Utility Networks as in the following topics:
 - Outline of Smart Utility Networks
 - Use image consisting of SUN-part and WAN-part
 - SUN requirements
 SUN requireme
 - Long-lived capability
 - Service area expansion
 - Further requirements
 - SUN-part activities
 - - Non FH PHY with MPM
 - New allocation in 920 MHz band
 - Low energy support
 - NICT's activities to realize SUN
 - Proposal on long-lived multi-hop network
 - IEEE 802 15.4g terminal development and proof test
 - WAN-part activities
 - ▷ NICT's activities to realize WAN
 - Cognitive radio router for advanced WAN
 - Wide area testbed by employing large number of routers
 - Operation in disaster situation
 - Conclusions

Further advanced SUN-WAN harmonization and proof tests as the next phase!