Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Introduction of New Frequency Regulation for Smart Utility Network in Japan] Date Submitted: [July 19th, 2011]

Source: [Hiroshi Harada¹, Fumihide Kojima¹, Sum Chin Sean¹, Kazuyuki Yasukawa², Satoshi Hasako³,

Tomonori Sato⁴, Kentaro Sakamoto⁵, Aiichiro Kashiwagi⁶, Takahiro Banno⁷]

Company [¹NICT, ²Fuji Electric, ³Panasonic, ⁴Toshiba Toko Meter Systems, ⁵Tokyo Gas, ⁶Osaka Gas, ⁷Toho Gas]

Address [13-4, Hikari-no-oka, Yokosuka-shi, Kanagawa239-0847, Japan]

Voice:[1+81-46-847-5074]

FAX: [1+81-46-847-5440]

E-Mail:[harada@nict.go.jp]

Re: [In response to TG4g Call for Proposals]

Abstract: [This contribution summarizes new frequency regulation on 920 MHz band for Smart Utility Network in Japan and differences from current frequency regulation on 950 MHz.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Introduction of New Frequency Regulation for Smart Utility Network in Japan*

* The view and thought in this contribution are NOT ones of Ministry of Internal Affairs and Communications (MIC) in Japan. The amendment regulation described in this contribution may be changed in the future.

Summary

- The latest status of the reallocation of 950 MHz band in Japan is summarized
- The differences between current 950MHz and new 920 MHz band regulations are summarized
- Prospective addition and revision to current draft document are summarized.

Background

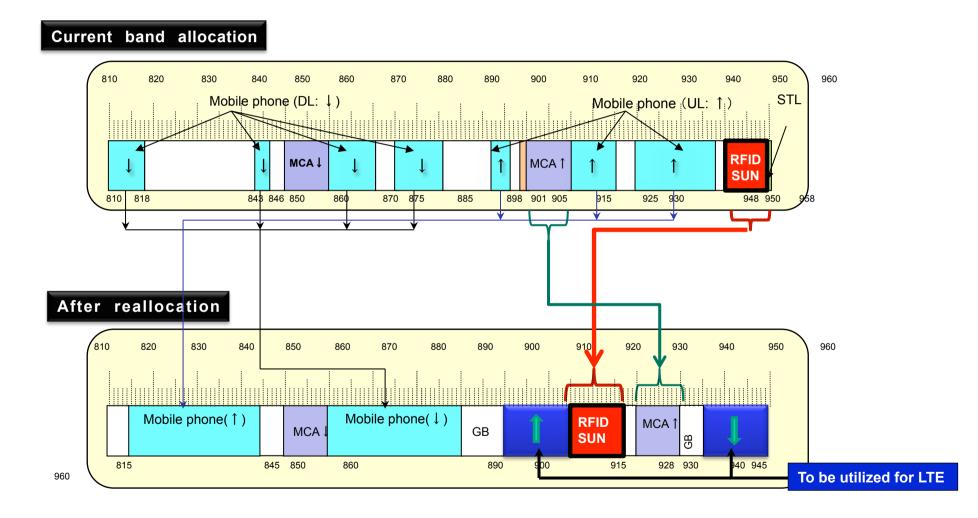
Background on Reallocation of Frequency Band for Smart Utility Network (SUN) in Japan

- Currently 950 MHz band has been assigned for SUN and 802.15.4g draft has been edited on the frequency band.
- 950MHz band will be reallocated to new mobile phone services such as LTE: Long Term Evolution in order to harmonize with other countries / regions.
- Instead, the frequency band for sensor networks including SUN, smart meters, etc will be moved from 950MHz band to 920MHz band (915MHz - 930MHz).

Jul/Aug 2011

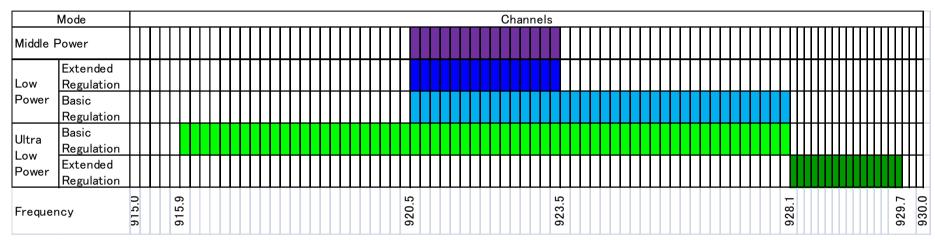
Dec 2011

Timeline for the amendment


- First Amendment Draft Completion Apr 2011
- Call for Public Comment
 May 2011
- Close Public Comments Jun 2011
- Revised Amendment Draft approval (Expected)
- New ARIB Standard Approval (Expected)
- 920MHz Band Effectuation July 2012 (Expected)

The difference between current 950MHz and new 920 MHz band regulations

Major changes from 950 MHz to 920 MHz


	950 MHz band	920 MHz band			
Frequency band	950MHz – 958MHz	915MHz – 930MHz			
Output power	10mW / 1mW	250mW / 20mW / 1mW			
Spectrum mask	See Slide #15				
Sending control	See Slide #18				

Overview of frequency band reallocation

July, 2011

Channel Plan and output power in 920MHz Band

- 5 Regulatory Mode
 - − Middle Power Mode (\leq 250mW)
 - Low Power Mode (≤ 20 mW)
 - Basic Regulation
 - Extended Regulation
 - − Ultra low Power Mode (\leq 1mW)
 - Basic Regulation
 - Extended Regulation

Middle Power Mode & Low Power Mode (Basic)

• Expected Applications: Sensor Networks, Smart Meters

< 3dBi

- Frequency: 920.5 928.1MHz
- Antenna Power: ≤ 20 mW (920.5MHz $\leq f \leq 928.1$ MHz)
 - \leq 250mW (920.5MHz \leq f \leq 923.5MHz)
- Antenna Gain:
- Channel Width: 200kHz*n (n=1-5)
- Adjacent Channel Leakage Power:
 - -15dBm (Output Power \leq 20mW)
 - -5dBm (Output Power > 20mW)
- Carrier Sense Level: -80dBm
- Sending Control:

Carrier sense time	Sending duration	Pause duration	The amount of sending time summed for 1 hour
\geq 128 μ s		\geq 2ms (sending time \geq 6ms) Not needed (sending time < 6ms)	\leq 360s

Low Power Mode (Extended)

- Expected Applications: Tele-metering, Tele-control
- Frequency:
- Antenna Power:
- Antenna Gain: \leq 3dBi
- Channel Width: 200kHz*n (n=1-5)
- Adjacent Channel Leakage Power:
 - -18dBm

< 20mW

920.5 - 923.5MHz

- Carrier Sense Level: -80dBm
- Sending Control:

Carrier	Sending	Pause	The amount of sending time summed for 1 hour
sense time	duration	duration	
$\geq 5s$	$\leq 4s^*$	$\geq 50 \text{ ms}$	Don't care

* The sender can transmit again during continuous sending time if it does carrier sense longer than 128µs at every transmission.

Ultra Low Power Mode (Basic)

- Expected Applications: Active RFID
- Frequency:
- Antenna Power:
- Antenna Gain: \leq 3dBi
- Channel Width: 200kHz*n (n=1-5)
- Adjacent Channel Leakage Power:

-26dBm

 $< 1 \mathrm{mW}$

915.9 - 928.1MHz

• Sending Control:

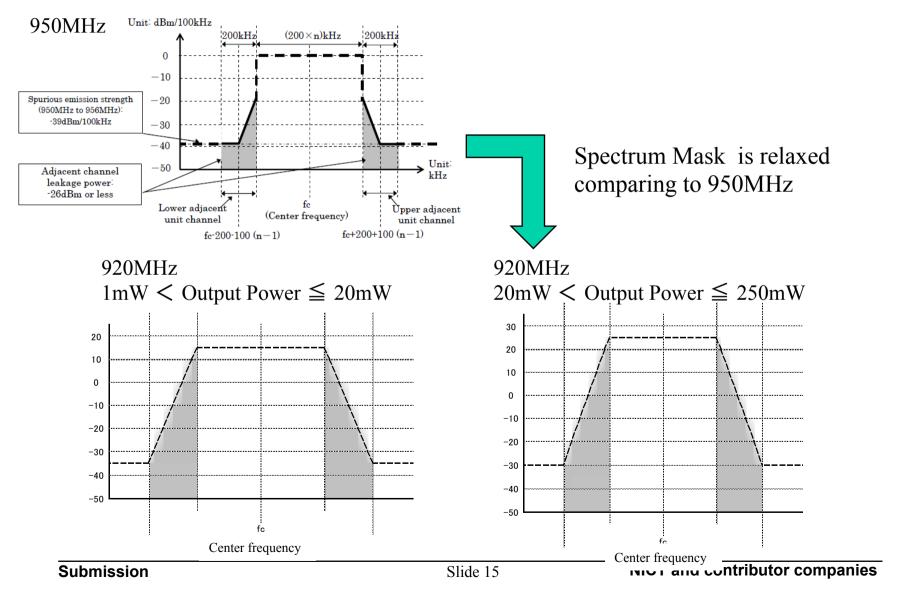
Carrier sense time	Sending duration	Pause duration	The amount of sending time summed for 1 hour	
Not needed	$\leq 100 \text{ms}$	≥ 100ms	$\leq 3.6s$	

Ultra Low Power Mode (Extended)

- Expected Applications: Remote Control
- Frequency:
- Antenna Power:
- Antenna Gain:
- Channel Width: 100kHz*n (n=1-5)
- Adjacent Channel Leakage Power:

-26dBm

 $< 1 \mathrm{mW}$


 \leq 3dBi

928.1 - 929.7MHz

• Sending Control:

Carrier sense time	Sending duration	Pause duration	The amount of sending time summed for 1 hour	
Not needed	$\leq 50 ms$	\geq 50ms	Don't care	

Spectrum Mask

Spurious Emission Strength in 950MHz

Frequency band	Spurious Emission Strength	Reference bandwidth
$f \le 710 \text{ MHz}$	-36 dBm	100 kHz
710 MHz $< f \le 945$ MHz	-55 dBm	1 MHz
945 MHz $< f \le$ 950 MHz	-55 dBm	100 kHz
950 MHz $< f \le$ 958 MHz	-39 dBm	100 kHz
$[\text{except for } f - fc \le 200 + 100 \times (n - 1) \text{ kHz}]$		
958 MHz < f \leq 1000 MHz	-58 dBm	100 kHz
$1000 \text{ MHz} < f \le 1215 \text{ MHz}$	-48 dBm	1 MHz
$1215 \text{ MHz} < f \le 1884.5 \text{ MHz}$	-30 dBm	1 MHz
$1884.5 \text{ MHz} < f \le 1919.6 \text{ MHz}$	-55 dBm	1 MHz
1919.6 MHz < f	-30 dBm	1 MHz

Spurious Emission Strength in 920MHz

Frequency band	Spurious Emission Strength	Reference bandwidth	
$f \le 710 \text{ MHz}$	-36 dBm	100 kHz	
$710 \text{ MHz} < f \le 900 \text{ MHz}$	-55 dBm	1 MHz	
900 MHz $\leq f \leq$ 915 MHz	-55 dBm	100 kHz	
915 MHz $< f \le$ 920.3 MHz	-36 dBm	100 kHz	
920.3 MHz $< f \le$ 924.3 MHz	-36dBm (Output power ≤ 20 mW)		
[except for $ f - fc \le 200 + 100 \times (n - 1) \text{ kHz}$]	-29dBm (Output power > 20mW)	100 kHz	
924.3 MHz < f \le 928.1 MHz [except for $ f - fc \le 200 + 100 \times (n - 1) \text{ kHz}$]	-36 dBm	100 kHz	
928.1 MHz < f \le 930.0 MHz [except for $ f - fc \le 100 + 50 \times (n - 1) \text{ kHz}$]	-36 dBm	100 kHz	
930 MHz $< f \le 1000$ MHz	-55 dBm	100 kHz	
$1000 \text{ MHz} < f \le 1215 \text{ MHz}$	-48 dBm	1 MHz	
1215 MHz < f	-30 dBm	1 MHz	

The blue colored items are different from the regulation of 950MHz band.

 Spurious emission strength should be -55dBm/100kHz or less when the frequency is higher than 915MHz and less or equal to 930MHz until July 24th 2012.

Sending Control

Conbination of carrier sense time and sending control parameters in 950MHz

Antenna power (P _t)				The amount of sending time summed for 1 hour
	\geq 10 ms	$\leq 1 s$	\geq 100 ms	Don't care
$P_t \le 1 mW$	≥128 µs	$\leq 100 \text{ ms}$	$\geq 100 \text{ ms}$	≥ 360 s
	0	$\leq 100 \text{ ms}$	$\geq 100 \text{ ms}$	≥ 3.6 s
$1 \text{ mW} < P_t \le 10 \text{ mW}$	≥ 10 ms	$\leq 1 s$	\geq 100 ms	Don't care
	≥128 µs	$\leq 100 \text{ ms}$	\geq 100 ms	≥ 360 s

Conbination of carrier sense time and sending control parameters in 920MHz

Antenna power (P _t)	Fraguanov				The amount of sending time summed for 1 hour
$P_t \le 1 mW$	928.1 - 929.7MHz	0	\leq 50 ms	≥ 50 ms	Don't care
$P_t \ge 1 \text{ III W}$	915.9 – 928.1MHz	0	$\leq 100 \text{ ms}$	≥ 100 ms	≥ 3.6 s
$ mW < P_{1} < 70 mW$	920.5 - 928.1MHz	≥128 µs	$\leq 400 \text{ ms}$	≥ 0/6 ms	≥ 360 s
	920.5 – 923.5MHz	≥ 5 s	\leq 4 s	≥ 50 ms	Don't care
$20 \text{ mW} \le P_t \le 250 \text{ mW}$	920.5 - 923.5MHz	≥128 µs	$\leq 400 \text{ ms}$	≥ 0/6 ms	≥ 360 s

It should be confirmed whether the same operating mode as 950MHz can be applied to 920MHz.

Prospective revision and addition to current draft document

- Both 920 MHz and 950 MHz regulation parameters must be included
- The following parts need to be revised in reflect of addition of 920 MHz parameters
 - operating mode, channel page, CCA, and so on
- During sponsor ballot, some comments related to revised parts will be made and the recommended changes to the draft document will be proposed