Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Cognitive Spectrum Management (CSM) Signaling Options
Date Submitted: March 6, 2011
Source: Mark Wilbur Company Collaborative Wireless Strategies LLC
Address: Concord Ohio USA
Voice: 01 (440) 221-2101 E-Mail: cws@ieee.org

Re:

Abstract: Comment Resolution

Purpose: Information to be used to describe functionality of new coexistence option

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Cognitive Spectrum Management (CSM) Signaling Options

Collaborative

Wireless Strategies LLC

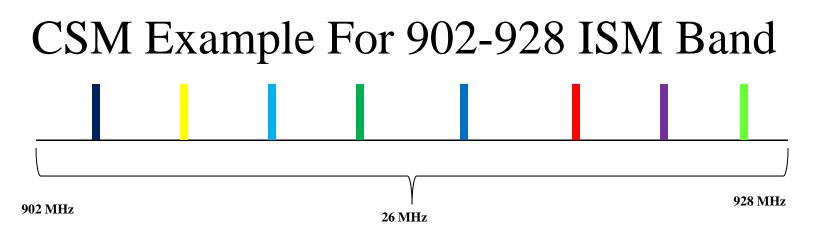
440-221-2101 cws_wireless@sbcglobal.net

Submission

Comment Resolution

Comments # 53,54,55,56 Recommend adding text to the TG4G draft to define

- Number of CSM channels = Floor (Valid channels / 16)
- Ch #`= X(floor (((Max Valid Channel -1) (Min Valid Channel +1) / N))
- EBI duration =N(EBR duration + Delay)²
- EBR consist of 512 bits
- EBR transmitted at 50 kbps
- Settling Delay is 1.28 uS
- Add slides 6-9 of doc 802.15-15-11-166 to draft in order to define the non-beacon enabled co-existence mechanism


Does 802 really need CSM ?

Example of real-world 902-928 ISM spectrum (Rural) 802.15.4G Min ACR limit Rx Sensitivity + 3db Spectrum Analyzer Data Spectrum Analyze firetide7 (10/21/2010 9:33:02 AM) -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 915.50 9 Center Freq: 917.500 000 MHz 916.50 917.50 918.00 919.50 916.00 917.00 918.50 919.00 dBm Span: 5.000 000 MHz Measurement Parameters 5.000 000 MHz Frequency Span Trace Mode Max Hold Reference Level -40.000 dBm Preamp 10.0 dB/div ON Scale Min Sweep Time 0.001 S Operator Name 0.0 dB Tower 0.0 dB Serial Number 1.0 kHz Base Ver. Reference Level Offset 1018077 Input Attenuation RBW V3.38 V4.35 VBW 1.0 kHz App Ver. Detection Peak Model MS2712E 917.500 000 MHz Options 915.000 000 MHz Date Center Frequency 25, 31 10/21/2010 9:33:02 AM Start Frequency 920 000 000 MHz Device Name Stop Frequency

Submission

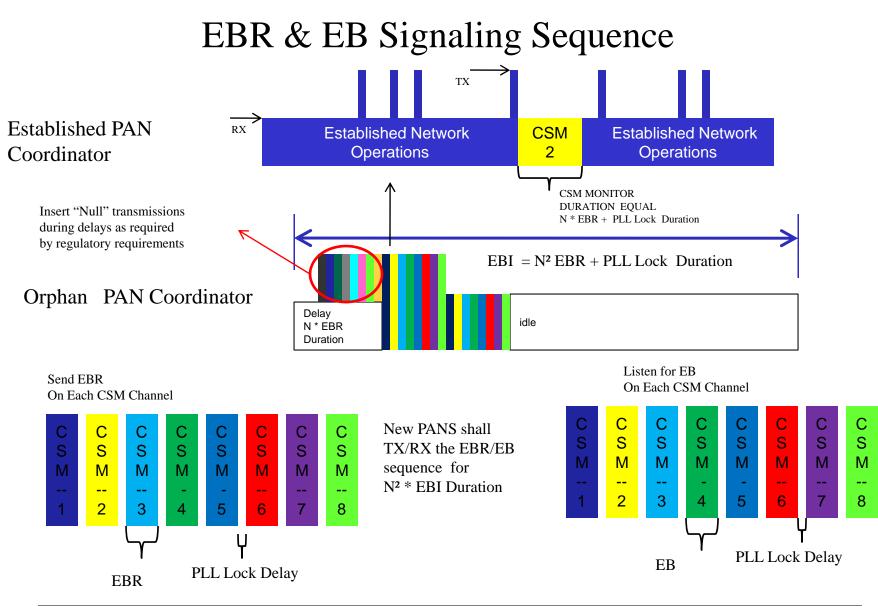
Enhanced Beacons and Beacon Requests

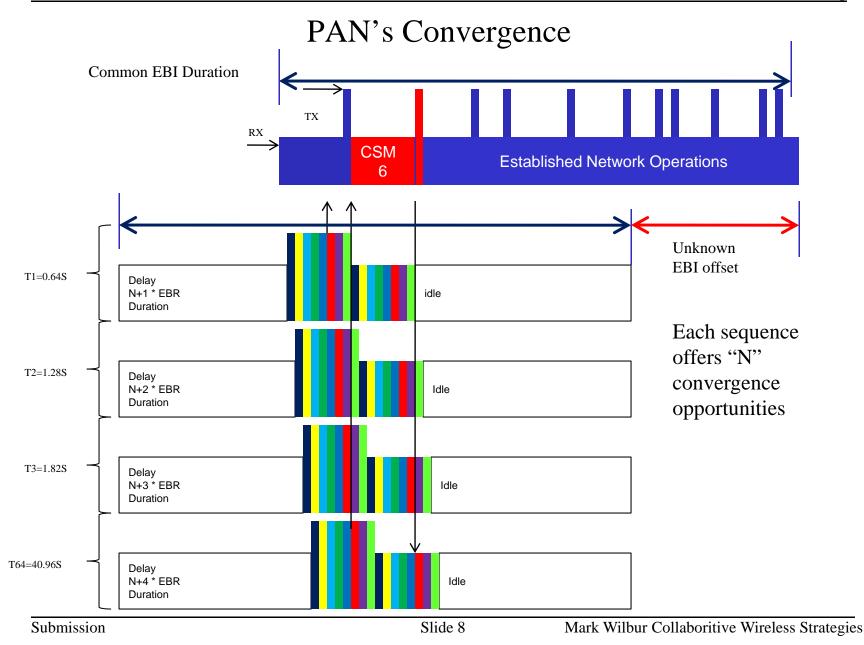
- The latest version of the 802.15.4G amendment has introduced two new information sharing mechanisms, <u>Enhanced Beacons</u> and <u>Enhanced Beacon</u> <u>Requests</u>. They are fundamentally identical to the existing 802.15.4I defined beacons and beacon requests but have been enhanced to include all of the operational PHY details.
- It is the intension of this presentation to define how the non-beacon enabled PAN operation currently defined within 802.15.4-2006 may be implemented utilizing the newly defined EB and EBR mechanism to enhance coexistence between the 3 otherwise orthogonal PHY's included in the 4G draft amendment.
- The EB includes all of the PHY information details required for a orphan PAN to initiate a request-to-join to the existing network or to avoid the existing network by excluding the existing PAN's operational PHY.
- Some network resources must be shared to monitor for beacon requests.
- A significant reduction in retransmissions is likely in densely utilized bands (additional work recommended to document collision reduction potential)

902-928 Band = 128 Valid Channels

"N" = Number of CSM signaling channels = Floor (Valid channels / 16 = 8 (for the 902-928 band)

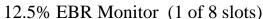
1/16th of the available channels available in the band selected for coding efficiency (additional research may be required to validate this is the ideal value)

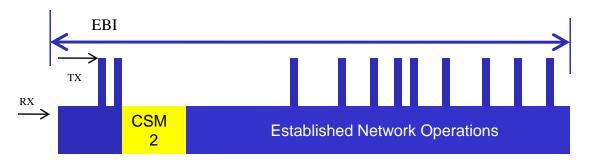

X =1 For N X=X+1


CSM CHANNEL NUMBER = X(floor (((Max Valid Channel -1) – (Min Valid Channel +1) / N))

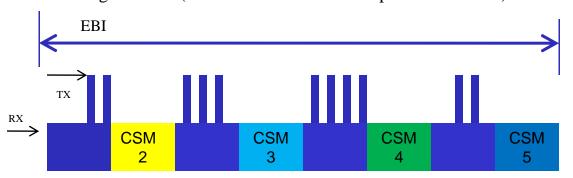
 $CSM \ 01 = 01(floor \ ((128 \ -1) - (1+1) \ / \ 8)) = 015$ $CSM \ 02 = \ 02(floor \ ((128 \ -1) - (1+1) \ / \ 8)) = 030$ $CSM \ 03 = 03(floor \ ((128 \ -1) - (1+1) \ / \ 8)) = 045$ $CSM \ 08 = 08(floor \ ((128 \ -1) - (1+1) \ / \ 8)) = 120$

"N" = Number of channels used for CSM signaling


CSM defined channels may be use for network traffic when necessary



Dynamic Network Priority Definition



Max Converge Time = EBI Duration * N² Attempts = 0.64S * 64 = 40.96 S

Co-Existence Priority

50 % EBR Monitor (4 of 8 slots) Max Converge Time = (EBI Duration $* N^2$ Attempts = 0.64S * 64) / 4 = 10.24 S

?Questions ?

Collaborative Wireless Strategies LLC

440-221-2101 cws_wireless@sbcglobal.net