Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Diffuse Rough Surface Scattering Analysis for THz Communication Systems
Date Submitted: 17 March, 2011
Source: Sebastian Priebe, Technische Universität Braunschweig
Address: Schleinitzstraße 22, D-38092 Braunschweig, Germany
Voice: +49-531-391-2417, FAX: +49-531-391-5192, E-Mail: priebe@ifn.ing.tu-bs.de
Re: doc.: IEEE 802.15-15-10-0436-01-0thz-towards-a-300-ghz-channel-model

Abstract: Rough surface scattering from common indoor materials like plaster or ingrain wallpaper is expected to exert a high impact on the propagation of THz waves in indoor scenarios. A suitable scattering model is obligatory for correct propagation simulations. In this presentation, the implementation of the Kirchhoff scattering theory as well as of a perturbation approach into a ray tracing algorithm is demonstrated. Ray tracing simulations are validated against measurements. The polarization-dependent impact of scattering on 300 GHz propagation channels is investigated in an indoor scenario.

Purpose: Investigation of rough surface scattering at THz frequencies as input for THz channel modeling

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Diffuse Rough Surface Scattering Analysis for THz Communication Systems

Sebastian Priebe¹, Martin Jacob¹, Thomas Kürner¹

¹ Institut für Nachrichtentechnik, Technische Universität Braunschweig, Germany

Outline

1. Introduction

- 2. Scattering Models
- 3. Implementation Aspects
- 4. Scattering Impact on THz Propagation Channels
- 5. Summary/Outlook

Introduction (1)

 Previous work by the Terahertz Communications Lab (TCL): Characterization of statistical rough surface parameters

 \rightarrow Necessary input for rough surface scattering models

Trans. on Ant. and Prop.

IEEE -3009,

Systems,

FHz Communication

2007

vol. 55, no. 11 Part 1, pp. 3002

Introduction (2)

• Influence of rough surfaces on the specular reflections at 350 GHz

- → Diffuse scattering?
- → Impact of scattering on broadband channel characteristics?

Outline

1. Introduction

- 2. Scattering Models
 - Kirchhoff Scattering Theory
 - Perturbation Method
 - Geometrical Depolarization
- 3. Implementation Aspects
- 4. Scattering Impact on THz Propagation Channels
- 5. Summary/Outlook

Kirchhoff Scattering Theory (1)

- analytically describes rough surface scattering
- relies on a Gaussian height deviation distribution
- is applicable for scattering from typical building materials at THz frequencies like plaster, wallpaper etc.

Kirchhoff Scattering Theory (2)

• Power reflection factor:

$$\langle R_{power} \rangle = \left(\frac{kA \cdot \cos(\theta_1)}{\pi r_0} \right)^2 \cdot \langle \rho \rho^* \rangle$$

• Scattering coefficient:

$$\langle \rho \rho^* \rangle_{\infty} = e^{-g} \cdot \left(\rho_0^2 + \frac{\pi l_{corr}^2 F^2}{A} \sum_{m=1}^{\infty} \frac{g^m}{m!m} e^{\frac{v_{xy}^2 l_{corr}^2}{4m}} \right)$$
 Specular Non-specular

- I_{corr} Surface correlation length g
- A Illuminated area
- F Geometrical factor
- ρ_0 Specular component

- Roughness factor
- σ Surface height standard deviation
- v_{xy} Geometry- and wavelength-dependent term

Kirchhoff Scattering Theory (3)

• The power reflection factor for A = $100 \cdot I_{corr}^2$, f = 300 GHz, $\theta_1 = 45^\circ$, $|r_{TE}| = 1$, $r_0 = 2$ m and realistic material parameters $I_{corr} = 2.3$ mm, $\sigma_h = 0.13$ mm of ingrain wallpaper:

→ Drawback of Kirchhoff theory: no depolarization

Perturbation Theory (1)

• Power reflection factor:

$$R_{Power,mn} = \frac{k^4 \cdot A \cdot \sigma^2}{\left(2\pi r_2\right)^2} \Phi_{mn}\left(\theta_1, \theta_2, \theta_3\right) S\left(k_{sc}'\right)$$

• Polarization-dependent factor:

$$\Phi_{mn} = 4\cos^2\theta_1\cos^2\theta_2 Q_{mn}^2$$

• Spatial surface spectrum (Gaussian height distribution):

$$S(k_{sc}') = l_{corr}^2 \pi e^{-rac{(k_{sc}' \cdot l_{corr})^2}{4}}$$

- Q_{mn} Geometry-, polarization- and material k[·]_{sc} parameter dependent factor
- A Illuminated area
- σ Surface height standard deviation
- r₂ Distance from scattering point to RX

- Scattered wave number projected onto surface
- k Wave number
- I_{corr} Surface correlation length

Perturbation Theory (2)

• The power reflection factor for A = $100 \cdot I_{corr}^2$, f = 300 GHz, $\theta_1 = 5^\circ$, $\theta_3 = 10^\circ$, $r_2 = 1$ m and realistic material parameters $\epsilon' = 3.691$,

 $\epsilon'' = 0.217$, $I_{corr} = 1.7$ mm and $\sigma_{h} = 0.15$ mm of plaster:

- \rightarrow High cross-polarization
- → Drawback: no specular component

Geometrical Depolarization (Jones Calculus)

Received electric field:

 $E_{RX} = \mathbf{g}_{RX}^H \cdot \mathbf{P} \cdot \mathbf{g}_{TX} \cdot L \cdot E_{TX}$

Polarization-dependent scattering matrix:

$$\mathbf{P} = \mathbf{R}(\varphi_{\mathbf{R}\mathbf{X}}) \cdot \mathbf{R}_{\mathbf{n}} \cdot \mathbf{R}(\varphi_{\mathbf{p}_{\mathbf{n}}}) \dots$$
$$\cdot \mathbf{R}_{\mathbf{2}} \cdot \mathbf{R}(\varphi_{\mathbf{p}_{\mathbf{2}}}) \cdot \mathbf{R}_{\mathbf{1}} \cdot \mathbf{R}(\varphi_{\mathbf{T}\mathbf{X}})$$

$$\mathbf{R}(\varphi) = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}$$

Reflection/scattering matrix:

$$\mathbf{R_n} = egin{pmatrix} r_{\perp,n} & \zeta_{1,n} \ \zeta_{2,n} & r_{\parallel,n} \end{pmatrix}$$

→ Co-polarization in scattering matrix according to Kirchhoff, crosspolarization according to perturbation approach

Outline

- 1. Introduction
- 2. Scattering Models

3. Implementation Aspects

- Implementation Into Ray Tracing
- Validation
- 4. Scattering Impact on THz Propagation Channels
- 5. Summary/Outlook

Implementation Into Ray Tracing

 Division of surface into square tiles around specular reflection point:

- $\rightarrow N^2$ scattered rays with a power proportional to $\frac{A}{N^2}$
- \rightarrow Tradeoff between accuracy and computational time

Validation (1)

• Channel measurements and ray tracing in a small office room with plaster walls at 300 GHz:

cf. doc.: IEEE 802.15-15-10-0436-01-0thz

Validation (2)

 Measured/simulated channel impulse responses for different tile sizes A_{tile} = x·x:

→ Good agreement between simulations and measurements regardless of tile size

Validation (3)

Measured/simulated channel transfer functions for different tile sizes:

 \rightarrow Good agreement also in the frequency domain

Outline

- 1. Introduction
- 2. Scattering Models
- 3. Implementation Aspects
- 4. Scattering Impact on THz Propagation Channels
 - Fading
 - Relevant Scattering Area
 - Polarization
- 5. Summary/Outlook

Fading

• Difference between simulated transfer functions with and without scattering (omnidirectional antenna):

- \rightarrow Deviations of up to 1.8 dB peak-to-peak
- \rightarrow Consideration of scattering obligatory for propagation modeling

Active Scattering Area

- Variation of the numbers M_{x,y} of respected tiles in x- and ydirection around specular reflection point
- Difference between the channel transfer functions with and w/o scattering summed up over 10 GHz bandwidth:

→ Main scattering contribution around specular reflection point

 \rightarrow Limited number of tiles sufficient (accuracy \leftrightarrow computational time)

Polarization (1)

- Coverage simulations in an unfurnished office room (6 m × 4 m × 2.5 m) with rough plaster walls and ceiling
- TX placed at x = 0.5 m, y = 0.5 m, z = 2.3 m; RX at z = 0.8 m
- Omnidirectional antennas with different polarizations
- \rightarrow Connection of nomadic device to an access point

Polarization (2)

Relative contribution of the scattered power to the total received power:

- \rightarrow Higher contribution for vertical polarization
- \rightarrow Scattering most relevant in corners of the room and close to walls

Polarization (3)

• Influence of cross-polarization:

 \rightarrow High depolarization close to walls

Polarization (4)

 Impact of scattering in the unfurnished room on the channel transfer functions at the critical position x = 0.125 m, y = 3.875 m:

- \rightarrow Increased frequency selectivity induced by scattering
- \rightarrow High cross-polarization over a broad frequency range

Outline

- 1. Introduction
- 2. Scattering Models
- 3. Implementation Aspects
- 4. Scattering Impact on THz Propagation Channels
- 5. Summary/Outlook

Summary

- The Kirchhoff scattering solution has been implemented into a ray tracing algorithm in order to model rough surface scattering
- A perturbation approach accounts for depolarization due to scattering
- The Jones calculus is used to describe the geometrical depolarization
- Ray tracing simulations have been validated against measurements
- Ray tracing has been performed in small indoor scenarios at 300 GHz
 - High frequency selectivity may be caused by scattering
 - A strong scattering impact occurs especially near walls and in the corners of the room
 - Depolarization induced by scattering is non-negligible

Outlook

- The impact of the surface roughness on THz propagation will be investigated
- Angular and temporal dispersion due to scattering will be considered
- An abstract stochastic scattering model will be developed for the fast generation of channel realizations
- → First system simulations will be performed to gain performance estimations of THz communication channels under realistic propagation conditions

References

More information on the topic can be found in:

- [1] Priebe, S.; Jacob, M.; Jansen, C.; Kürner, T.: Non-Specular Scattering Modeling for THz Propagation Simulations. Accepted for the 5th European Conference on Antennas and Propagation (EuCAP), 5 pages, Rome, April 2011.
- [2] Priebe, S.; Jacob, M.; Kürner, T.: Polarization Investigation of Rough Surface Scattering for THz Propagation Modeling. Accepted for the 5th European Conference on Antennas and Propagation (EuCAP), 5 pages, Rome, April 2011.

Thank you for paying attention.

Dipl.-Ing. Sebastian Priebe

priebe@ifn.ing.tu-bs.de