Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Comment resolution on the initial SB comment No.109]
Date Submitted: [20th January, 2011]
Source: [Sang-Kyu Lim, Ill Soon Jang, Dae Ho Kim, You Jin Kim, Kang Tae-Gyu] Company [ETRI]
Address: [138 Gajeongno, Yuseong-Gu, Daejeon, Korea]
Voice:[+82-42-860-1573], FAX: [+82-42-860-5218], E-Mail:[sklim@etri.re.kr]

Re: [Response to the initial SB for the IEEE 802.15.7 standard]

Abstract: [This document describes the comment resolution on the initial SB comment No.109]

Purpose: [To resolve the comment of initial SB comment No.109]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Comment resolution on the initial SB comment No.109

Sang-Kyu Lim sklim@etri.re.kr ETRI

Comment No.109

Comment No.	Name	Page	Subclause	Line	Comment	Proposed Change
/lina	Joachim Valewski	276	E.2.3		independent VLC transmitter (with an individual MAC sublayer each). This is a very awkward approach and the	Implement the lines instead as cells as discussed in E.3.2. Or even better, create as many cells as that there are pixels. By so doing, the pixels can be addressed individually with a modest increase in complexity.

• Main issue :

Does a LED display need the individual MAC sub-layers corresponding to each line when a dynamic LED display use GTS mechanism to support the VLC broadcast topology ?

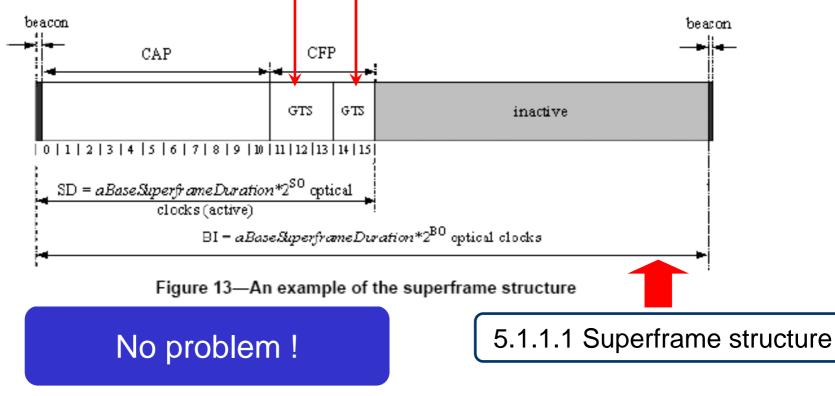
Text in sub-clause E.2.3

• E.2.3 VLC application using dynamic displays

A VLC enabled dynamic display can be used in the broadcast topology. The VLC broadcast topology in this standard consists of mainly the beacon and the downlink, as shown in Figure 14. Therefore, the VLC broadcast topology using a dynamic display can be constructed by the assignment of the active time slots and the use of GTS field in the beacon frame. Figure E.5 shows the VLC broadcast topology construction using the dynamic display. The active time slot #1 is assigned to the beacon and the active time slots from #2 to #8 are assigned to the downlink in Figure E.5. The GTS fields of the beacon frame can be used to indicate the GTS number, GTS length, and GTS direction for the broadcast topology. Multiple GTS slots can also be used depending upon the desired service level, the subscriber's grade, and the QoS policy.

1st and 2nd sentences in E.2.3

• A VLC enabled dynamic display can be used in the broadcast topology. The VLC broadcast topology in this standard consists of mainly the beacon and the downlink, as shown in Figure 14.


P2P mo	de (a) all slots in frame used for same data	
5	tar (b) beacon, contention, uplink, downlink slots	No problem !
broadca	st (c) broadcast slots (beacon, downlink)	
visibility mod	e (d) visibility slots	
d for slot indication		
iro 14 Evom	data beacon contention uplink downlink visibility	5.1.1.1 Superframe structure
ire 14—Exam	ple usage of frame structure for multiple topologies	

legen

Fig

3rd sentence in E.2.3

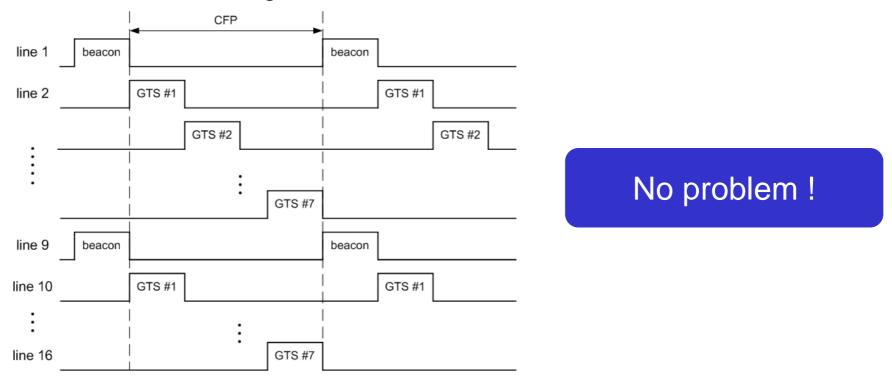
 Therefore, the VLC broadcast topology using a dynamic display can be constructed by the assignment of the active time slots and the use of GTS field in the beacon frame.

3rd sentence in E.2.3 (cont.)

• Therefore, the VLC broadcast topology using a dynamic display can be constructed by the assignment of the active time slots and the use of GTS field in the beacon frame.

Octets: 2	1	4/10	0/5/6/10/14	2	variable	variable	0/1	variable	2
Frame Control	Sequence Number	Addressing fields	Auxiliary Security Header	Superframe Spec	GTS fields (Figure 48)	Pending address fields (Figure 49)	cellSearch Length	Beacon Payload	FCS
MHR				MSDU				MFR.	

Figure 47—Beacon frame format



No problem !

5.2.2.1 Beacon frame format

4th and 5th sentences in E.2.3

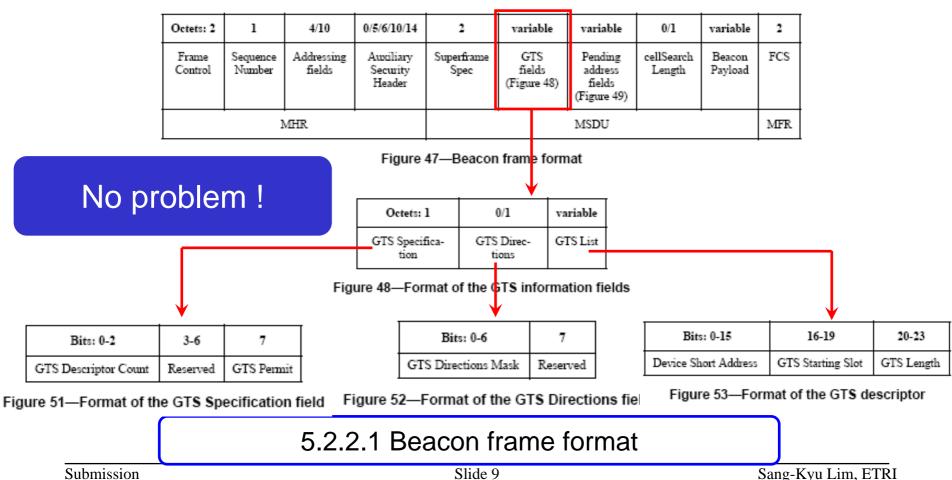
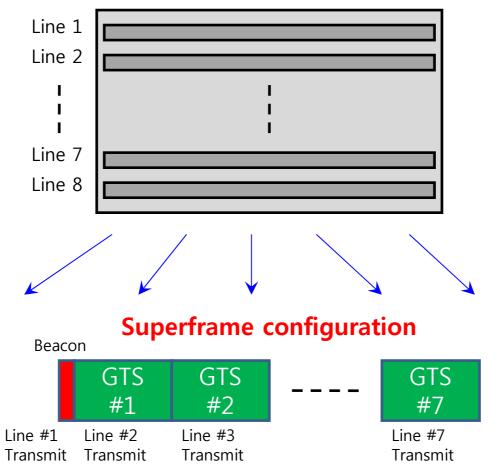

• Figure E.5 shows the VLC broadcast topology construction using the dynamic display. The active time slot #1 is assigned to the beacon and the active time slots from #2 to #8 are assigned to the downlink in Figure E.5.

Figure E.5 – VLC broadcast topology construction using the dynamic display

6th sentence in E.2.3

• The GTS fields of the beacon frame can be used to indicate the GTS number, GTS length, and GTS direction for the broadcast topology.


Last sentence in E.2.3

 Multiple GTS slots can also be used depending upon the desired service level, the subscriber's grade, and the QoS policy.

We cannot find any other problem on the last sentence in E.2.3.

Summary

Dynamic LED Display (Coordinator)

Response to comment No.109

• Main issue :

Does a LED display need the individual MAC sub-layers corresponding to each line when a dynamic LED display use GTS mechanism to support the VLC broadcast topology ?

• Response :

No problem because a dynamic a LED display use only a MAC sub-layer when it use GTS mechanism to support the VLC broadcast topology !