doc.: IEEE 802.15-10-0435-00-004g

Improved PHR coding of the MR-O-QPSK PHY

Michael Schmidt- ATMEL

June 29, 2010

IEEE P802.15 Wireless Personal Area Networks

Title: Date Submitted:	Improved PHR coding of the MR-O-QPSK PHY June 29. 2010
Source:	Michael Schmidt - Atmel (email: michael.schmidt@atmel.com)
Re:	Task Group 15.4g LB51 comment resolution
Abstract:	Comment resolutions related to PHR coding of the MR-O-QPSK \ensuremath{PHY}
Notice:	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release:	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Motivation

This document describes the proposed resolution of LB51 on some comments related to MR-O-QPSK PHY regarding the PHY header (PHR).

The following comments are addressed:

- ▶ SFD length: CID # 879
- ▶ PHR error detection: CID # 890, 891, 912
- ▶ PHR FEC: CID # 1470

The following comments are partially addressed:

▶ Pilot sequences: CID # 1475

Coding of PPDU scheme $(780/915 \text{ MHz band})^1$

15.625 kbit/s: (no FEC) + (bit-diff enc) + (64,1)-DSSS 31.25 kbit/s: (rate 1/2 FEC) + (bit-diff enc) + (16,1)-DSSS

¹as specified for the MR-O-QPSK PHY in draft P802.15.4g/d1,March 2010

- Bits of Preamble, SFD and PHR field:
 - no FEC
 - bit-differential encoding (BDE)
 - ► (N*4,1)-DSSS
- Bits of the PSDU for the lowest data rate are:
 - FEC: rate 1/2 convolutional coding, K = 7
 - bit-differential encoding (BDE)
 - ► (N,1)-DSSS

(SHR,PHR) and PSDU are approx. balanced with regard to the BER.

So why is there an issue?

Purpose of bit-differential encoding (BDE)

non-coherent demodulation

Purpose of bit-differential encoding (BDE)

- Iow chip SNR
- exploit non-coherent detection
- no phase control loop required
- Note: at low SNR, a phase control loop may cause considerable noise enhancement.
- non-coherent demodulation <u>after</u> de-spreading in order to improve multi-path robustness

Consider a binary $(32,8,d_{min} = 13)$ block code²

- code rate is 1/4
- optimal³ minimum distance for a binary (32,8) linear code
- Soft-decision ML-decoding at moderate complexity (256 codewords only)

³see Markus Grassel http://www.codetables.de/

²This code can be obtained from a (33,8,14)-code by puncturing position 33; see T. Helleseth & Ø. Ytrehus, How to find a [33,8,14] code, Report in Informatics (preliminary version), Dept. of Informatics, Univ. of Bergen, Norway, Nov. 1989.

doc.: IEEE 802.15-10-0435-00-004g

Simulation, assuming perfect chip synchronization and $\ensuremath{\mathsf{phase}^4}$

influence of bit-differential encoding (BDE)

⁴relevant for coherent detection

There seems to be little performance difference between: no-FEC + BDE + (4*N,1)-DSSS and (32,8,13)-FEC + BDE + (N,1)-DSSS

 All coding gain is eaten up by enhanced noise due to reduced spreading length.

But there is a gain!

For real world applications, there is always a frequency offset

 $\Omega [rad / T_{chip}]$

which cannot be perfectly estimated.

• A residual frequency offset $r = \Omega - \hat{\Omega}$ causes phase drift

$$\tilde{x}(k) = exp(jrk)x(k)$$

- Depending on r, de-spreading will result in loss of processing gain, when de-correlating against the known chip sequence.
- Clearly, a long DSSS sequence is prone to a residual error r.

Influence of residual frequency offset $r = \Omega - \hat{\Omega}$

no-FEC + BDE + (64,1)-DSSS

Influence of residual frequency offset $r = \Omega - \hat{\Omega}$

What about the SFD?

- ▶ FEC cannot be conveniently applied to the SFD.
- Will this make PHR FEC useless?

Difference between SFD and PHR field

- During PHR detection, a single info-bit error (or more) usually causes a packet error.
- During SFD detection, a single info-bit error (or more) must not lead to a packet error.

Let A_D be the event a correctly received word of length M

$$A_D: \|w - \hat{w}\| \le D$$

where

- ▶ ||.|| is the Hamming distance
- $w \in GF(2^M)$ is transmitted word
- $\hat{w} \in GF(2^M)$ is the detected word
- D is the maximum number of allowed bit errors

The complementary event \overline{A}_D is called a word error.

Word Error Rate (WER) for D = 2

M = 16 D = 2; no-FEC + BDE + (64,1)-DSSS

Word Error Rate (WER) for D = 3

M = 16 D = 3; no-FEC + BDE + (64,1)-DSSS

SFD candidates

- M = 16 bit rather than M = 8 bit SFD
- In order to allow bit errors during SFD search while preserving a low false alarm rate, the Hamming distance to zero-bit preamble sequence needs be optimized:

$$w^{opt} = \arg\max_{w \in GF(2^M)} \left\{ \min_{k \in 1, ..., M} \|w - (\underbrace{0, ..., 0}_{k}, w_0, ..., w_{M-k-1})\| \right\}$$

For an SFD pair, two such SFD words need to be found with good Hamming distances to each other.

SFD candidates

► single⁵ SFD

 $(w_0, w_1, ..., w_{15})^{opt} = (1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0)$

During search, distance to preamble is ≥ 9.pood SFD pair

 $(w_0, w_1, ..., w_{15})^{opt} = (1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0)$ $(w_0, w_1, ..., w_{15})^{opt2} = (1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0)$

During search, distance to preamble is ≥ 8 and $||w^{opt} - w^{opt2}|| = 9$.

⁵SpreadingMode \in {DSSS,MDSSS} cannot be indicated by the SFD value.

Candidates for PHR coding and spreading (780/915 MHz band)

Scheme	#	FEC	Intrl.	CRC-8	DSSS	#
	bits					chips
no-FEC-16-bit ⁶	16	no	no	no	(64,1)	1024
no-FEC-24-bit	24	no	no	yes	(64,1)	1536
BC-16-bit	16	$(32,8,d_{min}=13)^7$	no	no	(16,1)	1024
BC-24-bit	24	$(32, 8, d_{min} = 13)$	no	yes	(16,1)	1536
CC-32-bit	32	$1/2 \ CC^8 \ K = 7$	yes(8×8)	yes	(16,1)	1024
CC-24-bit	24	1/2 CC K = 7	yes(10×6)	yes	(16,1)	960
BCH-16-bit	16	BCH^9 (63, 16, $t = 11$)	no	no	(16,1)	1008

⁶as specified in draft P802.15.4g/d1,March 2010

⁷applying ML-decoding with soft decisions on code bits

⁸applying ML-Viterbi decoding with soft decisions on code bits

 $^{^{9}\}ensuremath{\mathsf{applying}}$ usual bounded minimum distance decoding with hard decisions on code bits

BC-16/-24-bit: Rate 1/4 (32,8,13) Block Coding

CC-32-bit: Rate 1/2 Convolutional Coding with K = 7

BCH-16-bit: BCH (63, 16, t = 11)

AWGN

AWGN performance of PHR coding schemes

Burst Errors: N_c consecutive chip values blanked out

Burst Performance of PHR coding schemes

doc.: IEEE 802.15-10-0435-00-004g

Issues related to BC-24-bit:

 Inserting a CRC-8 based HCS causes more overhead compared to CC-32 (i.e. 1536 chip samples versus 1024 chip samples).

Issues related to CC-32-bit and BCH-16-bit:

- In contrast to the (32,8,13) code (processing data octet by octet), it is not possible to access reliable information of the Control field before all chip samples belonging to the PHR field are received.
- Consequently, chip samples belonging to the PSDU part need to be <u>buffered</u> while decoding the PHR field.
- The buffer size depends on the processing delay of the PHR FEC decoder.

doc.: IEEE 802.15-10-0435-00-004g

CC-24-bit: Rate 1/2 Convolutional Coding with K = 7

insert pilots into PSDU chip sequence

Pilot symbols

Pilot symbols

first pilot:

- breathing space for PHR-FEC decoding
- simplifies initial phase estimation¹⁰
- simplifies initial channel estimation
- following pilots:
 - supports channel tracking for long packets when combined with equalization (500 kbit/s PSDU data rate)
 - supports timing point tracking for long packets (all PSDU data rates)

 $^{10}\text{used}$ for coherent detection of (N,4)-DSSS or (N,8)-MDSSS during PSDU

Candidates for pilot symbols (780 / 915 MHz band)

pilot length # chips	pilot duration [us]	inter pilot spacing $\#$ chips
32x4 = 128	128	2048
16x4 = 64	64	1024

- Assuming a 16-MHz processing clock, this implies 1024 and 2048 processing cycles, respectively.
- ► This keeps FEC decoder complexity at a moderate level.
- Pilot sequence shall support simple correlation based channel estimation.
- Reasonable inter pilot spacing with regard to expected coherence time while keeping data rate loss due to overhead small (approx. 6%)

PHR Error Detection

- reduces sync on frames with incorrectly decoded Ctrl or Length field information
- may cause overhead
- let E be the event a detected PHR field error
- ▶ let $\overline{E}\&\overline{A_0}$ be the event a non-detected PHR field error and the PHR Filed was incorrectly received
- ► let FAR (False Alarm Rate) denote the rate of occurrence of the event E&A₀
- clearly, FAR = WER if no Error detection capability can be exploited

Candidates for PHR Error Detection

- single parity check bit PHR(0) over PHR(1:15)
- two parity check bits¹¹ PHR(0:1) over PHR(2:8) and PHR (9:15), respectively
- CRC-8 based HCS¹² with generator polynomial X⁸ + X² + X + 1
- implicitly for BCH code (syndrome check)

 $^{^{11}}as$ specified for the MR-O-QPSK PHY in draft P802.15.4g/d1,March 2010 $^{12}similar$ to the OFDM PHY in draft P802.15.4g/d1,March 2010

Two parity check bits: poor CRC-8: good

Performance of Error Detection: BC-16/24-bit

Two parity check bits: poor CRC-8: good

Performance of Error Detection: CC-24-bit

Two parity check bits: poor CRC-8: good

Performance of Error Detection: BCH-16-bit

 13 The BCH-(63,16,t = 11) code has a generator polynomial of degree 47.

Scheme	advantage	disadvantage
No-FEC-16-bit	 simple detection early access to Ctrl field (bit-by-bit) 	 detection prone to frequency estimation and burst errors poor error detection (two parity bits)
No-FEC-24-bit	 simple detection early access to Ctrl field (bit-by-bit) good error detection (CRC-8) 	 detection prone to frequency estimation and burst errors error detection: CRC-8 causes more overhead

Scheme	advantage	disadvantage
BC-16-bit	 robust detection early access to Ctrl field (octet by octet) simple decoder 	poor error detection (two parity bits)
BC-24-bit	 robust detection good error detection (CRC-8) early access to Ctrl field (octet-by-octet) simple decoder 	 error detection: CRC-8 causes more overhead

Scheme	advantage	disadvantage
CC-24/32-bit	 very robust detection complex hardware of PSDU FEC decoder can be reused good error detection (CRC-8) 	 late access to Ctrl field PSDU chip buffering required (unless pilots are prepended)
BCH-16-bit	 detection: sufficiently robust error detection: nearly perfect (syndromes) syndrome computation can already be performed during receive 	 late access to Ctrl field additional complex hardware for FEC decoder required PSDU chip buffering required (unless pilots are prepended)

Conclusions

PHR processing based on pure spreading without FEC is prone to frequency estimation errors and burst errors.

PHR FEC is highly recommended!

- In order to benefit from PHR FEC, the uncoded SFD field should be extended <u>16 bits</u>. This allows up to 3 SFD bit errors while keeping the false alarm rate low.
- Periodical insertion of <u>pilots</u> to the PSDU part is very useful for phase estimation, tracking and equalization. Decoding complexity of PHR FEC can be relaxed when prepending a first pilot sequences at the beginning of the PSDU part.
- PHR error detection based on 1 or 2 parity check bits is insufficient, especially in conjunction with FEC.