Project: IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Current Status of Japanese Regulatory Changes regarding 950MHz Band]
Date Submitted: [15 Mar., 2010]
Source: [Shusaku Shimada] Company [Independent]
Address [1-55-19 Ohara-town Setagaya Tokyo, 156-0041 Japan]
Voice:[+81-33468-6540], FAX: [+81-33468-0625], E-Mail:[shusaku@ieee.org]
Re: [15-09-0739-00-004g-Prospective-Institutional-Changes-regarding-Japanese-950MHz-Band]
Abstract: [Extended $950-958 \mathrm{MHz}$ band is about to be available and its corresponding regulatory rules are scheduled to be in effect in a few months, including revised ARIB Standard T-96 which have been discussed simultaneously. Prospective spectral addition of $958-960 \mathrm{MHz}$ is not scheduled yet, while the future availability is implied in the consultation document issued this time.]
Purpose: [This submission is intended as an advanced or provisional information before the issue of official ordinance, for all proposers of IEEE802.15.4g PHY amendment project.]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Prospective institutional changes regarding 950 MHz band

1. Expansion of Japanese 950 MHz band

- 2 step regulatory process:

Obsolete PDC band first, and possible STL band opened up in future.
(together with the introduction of medium power RFID system)
2. Relaxed maximum signal bandwidth

- Currently 600 kHz max. ($3 \times 200 \mathrm{kHz}$ elementary channels)
\Rightarrow up to 1 MHz max. ($5 \times 200 \mathrm{kHz}$ elementary channels)

3. Deregulation regarding 10 mW (TX power) systems

- Increased available channels for 10 mW active systems
- Introduction of 128 us short carrier sense with 100 ms TX control

4. Reinforced Spurious Limitation within Aviation Navigation System band
5. Schedule

Expansion of Japanese 950 MHz band

Possible future expansion covering over STL (Studio Tower Link) band by 2015
$\stackrel{\text { Totally } 4 \mathrm{MHz} \text { addition }}{\stackrel{\text { T }}{ }}$
RFID/Wireless Sensor Network (Speculation)

Currently Available Frequency Channels

Possible Future Expansion by 2015

[Informative Detail of Channel Assignment \& conditions]

Current (2007)

$\begin{array}{\|r\|} \hline \text { Element CH } \\ (200 \mathrm{kHz}) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \# \text { Center } \\ \text { Frequency } \\ \hline \end{array}$	Active ID Sensor Ne	$\begin{aligned} & \text { 1W Licens } \\ & \text { tPassive RF } \end{aligned}$	$\begin{aligned} & \Phi \mathrm{d} 10 \mathrm{~mW} \\ & \text { IDassive RFID } \end{aligned}$	$\begin{array}{\|r\|} \hline \text { Element CH } \\ (200 \mathrm{kHz}) \end{array}$	$\begin{array}{\|l\|} \hline \# \text { Center } \\ \text { Frequency } \\ \hline \end{array}$	Active ID Sensor Ne	1W Licens	$\pm \mathrm{d} 10 \mathrm{~mW}$							
1	951.0				-1	951.0										
2	951.2				2	951.2										
3	951.4				3	951.4										
4	951.6				4	951.6										
5	951.8				5	951.8										
6	952.0				6	952.0										
7	952.2				7	952.2										
8	952.4				8	952.4										
9	952.6				9	952.6										
10	952.8				10	952.8										
11	953.0				11	953.0										
12	953.2				12	953.2										
13	953.4				13	953.4										
14	953.6				14	953.6										
15	953.8				15	953.8										
16	954.0				16	954.0										
17	954.2	10 mW			17	954.2	10 mW									
18	954.4	10 mW			18	954.4	10 mW									
19	954.6	10 mW			19	954.6	10 mW									
20	954.8	10 mW			20	954.8	10 mW									
21	955.0				21	955.0	10 mW									
22	955.2				22	955.2	10 mW									
23	955.4				23	955.4	10 mW									
24	955.6				24	955.6	10 mW									
25	955.8				25	955.8	10 mW									
26	956.0				26	956.0	10 mW									
27	956.2				27	956.2	10 mW									
28	956.4				28	956.4	10 mW									
29	956.6				29	956.6	10 mW									
30	956.8				30	956.8	10 mW									
31	957.0				31	957.0	10 mW									
32	957.2				32	957.2	10 mW									
33	957.4				33	957.4	10 mW									
34	957.6				34	957.6										
35	957.8				35	957.8										
O		CS:128us/-75dBm TX:100ms with 100ms pause (10\% DC). or CS:10ms/-75dBm TX:1s with 100ms pause (100\%(No) DC). or without CS (0.1\% DC and 1mW TX Power)														
10 mW (obsolete)									1mW: Same as above 10mW: CS:10ms/-75d			with 100	ms paus			
$\begin{array}{\|r\|} \hline \text { Element Cl } \\ (200 \mathrm{kHz}) \\ \hline \end{array}$	\# Center Frequency	$\begin{gathered} \hline \text { Active ID } \\ \text { Sensor Ne } \end{gathered}$	1W Licens tPassive RF	dd 10 mW IDassive RFID	Element CH $(200 \mathrm{kzz})$	\# Center Frequency	Active ID Sensor Ne	$\begin{aligned} & \text { 1W Licens } \\ & \text { etPassive RF } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ed } 10 \mathrm{~mW} \\ =\text { Dassive RF\|I } \end{array}$							

Speculated (by 2015)

$\begin{array}{\|r\|} \hline \text { Element CH } \\ (200 \mathrm{kz}) \\ \hline \end{array}$	\# Center Frequency	$\begin{array}{c\|} \hline \text { Active ID } \\ \text { Sensor Net } \end{array}$	$\begin{aligned} & \text { 1W Licens } \\ & \text { Pas aive RF } \end{aligned}$	d 10 mW W
1	951.0			
2	951.2			
3	951.4			
4	951.6			
5	951.8			
6	952.0			
7	952.2			
8	952.4			
9	952.6			
10	952.8			
11	953.0			
12	953.2			
13	953.4			
14	953.6			
15	953.8			
16	954.0			
17	954.2	10 mW		
18	954.4	10 mW		
19	954.6	10 mW		
20	954.8	10 mW		
21	955.0	10 mW		
22	955.2	10 mW		
23	955.4	10 mW		
24	955.6	10 mW		
25	955.8	10 mW		
26	956.0	10 mW		
27	956.2	10 mW		
28	956.4	10 mW		
29	956.6	10 mW		
30	956.8	10 mW		
31	957.0	10 mW		
32	957.2	10 mW		
33	957.4	10 mW		
34	957.6	10 mW		
35	957.8	10 mW		
36	958.0	10 mW		
37	958.2	10 mW		
38	958.4	10 mW		
39	958.6	10 mW		
40	958.8	10 mW		
41	959.0	10 mW		
42	959.2	10 mW		
43	959.4	10 mW		
$\begin{array}{\|r\|} \hline \text { Element CH } \\ (200 \mathrm{kzz}) \\ \hline \end{array}$	\# Center Frequency	$\begin{gathered} \hline \text { Active ID } \\ \text { Sensor Net } \end{gathered}$	1W Licens tPassive RF	ed 10mW

Relaxed Maximum Signal Bandwidth

[Background]
Traffic per node is small in WSN, but the commissioning stages and security provisioning phase of operation require higher link capacity.
15.4 g PAR states 1500 octet payload is required to be accommodated in a frame and this facilitate the transaction of node or network authentication and the exchange of certificate and temporal keys.
[Purpose] Up to 1 MHz signal BW is able to accommodate 1500 octet payload with realistic TX duration by using higher bit rate, and finally contributing to the security enhancement as well.

Relaxed Maximum Signal Bandwidth

Channel Mask (10 mW case)

Relaxed Maximum Signal Bandwidth

Channel Mask (1 mW case)

Summary of Technical Requirement

Channel Access Conditions for various system categories

System Categories	$\begin{gathered} \text { Duty Cycle } \\ \text { Control } \\ \hline \end{gathered}$	Carrier Sense Requirement	TX Requirement	Available Channels by law ordinance (Co-existence practice recommended by ARIB Std.)
$\begin{gathered} 1 \mathrm{~mW} \\ \text { Active ID/WSN } \end{gathered}$	0.1\%	Not required	TX 100ms with 100ms Pause	$1-33 \mathrm{Ch}$. (yield $7-19$, if in use)
	10\%	128us $-75 \mathrm{dBm} /$ Combined Ch.	TX 100ms with 100ms Pause	$1-33 \mathrm{Ch}$. (yield $7-19$, if in use)
10 mW Active ID/WSN	10\%	128us $-75 \mathrm{dBm} /$ Combined Ch.	TX 100ms with 100ms Pause	$\begin{gathered} 17-33 \mathrm{Ch} . \\ \text { (yield } 17-19, \text { if in use) } \end{gathered}$
	100\%	10 ms $-75 \mathrm{dBm} /$ Combined Ch.	TX 1s with 100ms Pause	$\begin{gathered} 17-33 \mathrm{Ch} . \\ \text { (yield } 17-19, \text { if in use) } \end{gathered}$
10 mW Passive RFID	10\%	128us $-64 \mathrm{dBm} /$ Combined Ch.	TX 100ms with 100ms Pause	21-33Ch.
	100\%	10 ms $-64 \mathrm{dBm} /$ Combined Ch.	TX 1s with 100ms Pause	$\begin{gathered} 7-33 \mathrm{Ch} . \\ \text { (yield 7-19, if in use) } \end{gathered}$
250mW Passive RFID	100\%	5 ms $-74 \mathrm{dBm} /$ Combined Ch.	TX 1s with 100ms Pause	7-27Ch. (yield 19-27 as long as possible)
1W Passive RFID Registered	100\%	5 ms $-74 \mathrm{dBm} /$ Combined Ch.	TX4s with 50ms Pause	$7-27 \mathrm{Ch}$. (yield 19-21 as long as possible)
1W Passive RFID Licensed	100\%	Not required	Without TX control	$8,14,20,26 \mathrm{Ch}$ (yield 26 as long as possible)

Reinforced Spurious Regulation

Schedule

2009 Nov. first week MIC Telecommunication Council WG Approval (Draft consultation) Completed
2009 Nov. second week MIC Telecommunication Council Approval (Solicitation of public comments) Completed
2009 Nov. 13 to Dec. 13 Submission period for Public Comments.
Completed with no objection
2009 Dec. second week MIC Telecommunication Council Approval (Final draft consultation)
2009 Dec. third week Completion of Consultation

Completed
Completed

2010 March to April MIC Radio Administration Council Approval (TELEC test procedure) Almost completed
2010 May to June Notification of Law Ordinance
Scheduled on time

END

