Project: IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Current Status of Japanese Regulatory Changes regarding 950MHz Band]

Date Submitted: [15 Mar., 2010]

Source: [Shusaku Shimada] Company [Independent]

Address [1-55-19 Ohara-town Setagaya Tokyo, 156-0041 Japan]

Voice:[+81-33468-6540], FAX: [+81-33468-0625], E-Mail:[shusaku@ieee.org]

Re: [15-09-0739-00-004g-Prospective-Institutional-Changes-regarding-Japanese-950MHz-Band]

Abstract: [Extended 950-958MHz band is about to be available and its corresponding regulatory rules are scheduled to be in effect in a few months, including revised ARIB Standard T-96 which have been discussed simultaneously. Prospective spectral addition of 958-960MHz is not scheduled yet, while the future availability is implied in the consultation document issued this time.]

Purpose: [This submission is intended as an advanced or provisional information before the issue of official ordinance, for all proposers of IEEE802.15.4g PHY amendment project.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Prospective institutional changes regarding 950MHz band

- 1. Expansion of Japanese 950MHz band
 - 2 step regulatory process:

Obsolete PDC band first, and possible STL band opened up in future.

(together with the introduction of medium power RFID system)

- 2. Relaxed maximum signal bandwidth
 - Currently 600kHz max. (3 × 200kHz elementary channels)
 - \Rightarrow up to 1MHz max. (5 × 200kHz elementary channels)
- 3. Deregulation regarding 10mW (TX power) systems
 - Increased available channels for 10mW active systems
 - Introduction of 128 us short carrier sense with 100ms TX control
- 4. Reinforced Spurious Limitation within Aviation Navigation System band
- 5. Schedule

Expansion of Japanese 950MHz band

Doc.: 15-10-0180-00-004g

Possible Future Expansion by 2015

[Informative Detail of Channel Assignment & conditions]

Current (2007)				Upcoming (2010)					Speculated (by 2015)				
Element Ch	# Center	Active ID 1W L	icensed 10mW	Element Cl		Active ID	1W Licensed	I 10m W	Element Ch	# Center	Active ID	1W License	ed 10mW
(200kHz)	Frequency	Sensor NetPassi	ive RFIDassive RFID	(200kHz)	Frequency	Sensor Ne	Passive RFIE	assive RFID	(200kHz)	Frequency	Sensor Ne	tPassive RF	Dassive RFID
1	951.0			1	951.0				1	951.0			
2	951.2			2	951.2				2	951.2			
3	951.4			3	951.4				3	951.4			
4	951.6			4	951.6				4	951.6			
5	951.8			5	951.8				5	951.8			
6	952.0			6	952.0				6	952.0			
7	952.2			7	952.2				7	952.2			
8	952.4			8	952.4				8	952.4			
9	952.6			9	952.6				9	952.6			
10	952.8			10	952.8				10	952.8			
11	953.0			11	953.0				11	953.0			
12	953.2			12	953.2				12	953.2			
13	953.4			13	953.4				13	953.4			
14	953.6			14	953.6				14	953.6			
15	953.8			15	953.8				15	953.8			
16	954.0			16	954.0				16	954.0			
17	954.2	10mW		17	954.2	10mW			17	954.2	10mW		
18	954.4	10mW		18	954.4	10mW			18	954.4	10mW		
19	954.6	10m W		19	954.6	10mW			19	954.6	10m W		
20	954.8	10mW		20	954.8	10mW			20	954.8	10m W		
21	955.0			21	955.0	10mW			21	955.0	10m W		
22	955.2			22	955.2	10mW			22	955.2	10m W		
23	955.4			23	955.4	10mW			23	955.4	10m W		
24	955.6			24	955.6	10mW			24	955.6	10m W		
25	955.8			25	955.8	10mW			25	955.8	10m W		
26	956.0			26	956.0	10mW			26	956.0	10m W		
27	956.2			27	956.2	10mW			27	956.2	10mW		
28	956.4			28	956.4	10mW			28	956.4	10mW		
29	956.6			29	956.6	10mW			29	956.6	10mW		
30	956.8			30	956.8	10mW			30	956.8	10mW		
31	957.0			31	957.0	10mW			31	957.0	10mW		
32	957.2			32	957.2	10mW			32	957.2	10mW		
33	957.4			33	957.4	10mW			33	957.4	10m W		
34	957.6			34	957.6				34	957.6	10m W		
35	957.8			35	957.8				35	957.8	10m W		
	0500	00.400 /	75 IB	11 400	050.0	(400/ DC			36	958.0	10mW		
			75dBm TX:100ms v		•	•	<i>'</i>		37	958.2	10mW		
		or CS:10ms	s/-75dBm TX:1s wit	h 100ms n	ause (10	00%(No)	DC).		38	958.4	10m W		
			S (0.1% DC and 1n	•	`	()	-/-		39	958.6	10m W		
			IIVV IAPO	wei)		\Box		40	958.8	10m W			
10mW		1mW: Same as above							41	959.0	10m W		
(obsolete)		10mW: CS:10ms/-75dBm TX:1s with 100ms pause.							42	959.2	10m W		
(ODSOIELE)		TOTHER. Co. TOTHS/-/ SUDIT TA. 15 WILL TOUTIS PAUSE.							43	959.4	10m W		
Element Ch	# Center	Active ID 1W L	icensed 10mW	Element Cl			1W Licensed		Element Ch	# Center	Active ID	1W License	ed 10mW
(200kHz)	Frequency		ive RFIDassive RFID	(200kHz)	Frequency	Sensor Ne	tPassive RFIE	assive RFID	(200kHz)	Frequency			Dassive RFID

Relaxed Maximum Signal Bandwidth

[Background]

Traffic per node is small in WSN, but the commissioning stages and security provisioning phase of operation require higher link capacity.

15.4g PAR states 1500 octet payload is required to be accommodated in a frame and this facilitate the transaction of node or network authentication and the exchange of certificate and temporal keys.

[Purpose]

Up to 1MHz signal BW is able to accommodate 1500 octet payload with realistic TX duration by using higher bit rate, and finally contributing to the security enhancement as well.

Relaxed Maximum Signal Bandwidth

Channel Mask (10mW case)

Relaxed Maximum Signal Bandwidth

Channel Mask (1mW case)

Mar. 15, 2010 Doc. : 15-10-0180-00-004g

Summary of Technical Requirement

Channel Access Conditions for various system categories

System	Duty Cycle Control		TX Reguirement	Available Channels by law ordinance (Co-existence practice recommended by ARIB Std.)
Categories	Control	Requirement	Requirement	
1mW	0.1%	Not required	TX 100ms with 100ms Pause	1-33Ch. (yield 7-19, if in use)
Active ID/WSN	10%	128us -75dBm/Combined Ch.	TX 100ms with 100ms Pause	1-33Ch. (yield 7-19, if in use)
10mW	10%	128us -75dBm/Combined Ch.	TX 100ms with 100ms Pause	17-33Ch. (yield 17-19, if in use)
Active ID/WSN	100%	10ms -75dBm/Combined Ch.	TX1s with 100ms Pause	17-33Ch. (yield 17-19, if in use)
10mW	10%	128us -64dBm/Combined Ch.	TX 100ms with 100ms Pause	21-33Ch.
Passive RFID	100%	10ms -64dBm/Combined Ch.	TX1s with 100ms Pause	7-33Ch. (yield 7-19, if in use)
250mW Passive RFID	100%	5ms -74dBm/Combined Ch.	TX1s with 100ms Pause	7-27Ch. (yield 19-27 as long as possible)
1W Passive RFID Registered	100%	5ms -74dBm/Combined Ch.	TX4s with 50ms Pause	7-27Ch. (yield 19-21 as long as possible)
1W Passive RFID Licensed	100%	Not required	Without TX control	8, 14, 20, 26Ch (yield 26 as long as possible)

Reinforced Spurious Regulation

Schedule

2009 Nov. first week	MIC Telecommunication Council WG Approval (Draft consultation) Completed
2009 Nov. second week	MIC Telecommunication Council Approval (Solicitation of public comments) Completed
2009 Nov. 13 to Dec. 13	Submission period for Public Comments <u>Completed with no objection</u>
2009 Dec. second week	MIC Telecommunication Council Approval (Final draft consultation) Completed
2009 Dec. third week	Completion of Consultation Completed
(2010 January to March)	ARIB discretionary standardization process <u>Almost completed</u>
2010 March to April	MIC Radio Administration Council Approval (TELEC test procedure) Almost completed
2010 May to June	Notification of Law Ordinance Scheduled on time

13

END