IEEE P802.15

Wireless Personal Area Networks

Project	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Title	Clause 7 - FSK Draft
Date Submitted	[12-January-2010]
Source	[Phil Beecher] Voice: $\left[\begin{array}{l}\text { +44 1273 422275] } \\ \text { [Beecher Comms Consultants, PGE] }\end{array}\right.$ Fax: $[\mathrm{n} / \mathrm{a}]$ [16, Saxon Road, Hove, BN3 4LE, UK] E-mail: [pbeecher@ieee.org]
Contributors	[Robert Mason, Elster Cristina Seibert, Silver Spring Networks Daniel Popa, Itron Fumihide Kojima, NICT]
Re:	[802.15.4 Amendment 4g]
Abstract	[Proposed Content for Clause 7 of FSK draft.]
Purpose	[For consideration for TG4g candidate draft.]
Notice	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

7. MAC sublayer specification 12
7.1 MAC sublayer service specification 3
47.1 MAC sublayer service specication
7.1.1 MAC data service6
7.1.2 MAC management service8
7.1. MAC managene service 9
7.2 MAC frame formats 10
111213
14
7.2.1 General MAC frame format 15
Replace Figure 79 with the following figure: 16 17

Octets: 2	1	0/2	0/2/8	0/2	0/2/8	$\begin{gathered} 0 / 5 / 6 / 10 / \\ 14 \end{gathered}$	variable	2/4
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	Source PAN Identifier	Source Address	Auxiliary Security Header	Frame Payload	FCS
		Addressing fields						
MHR							MAC Payload	MFR

Figure 79-General MAC frame format1819
Figure 79 -General MAC frame format2021222324252627282930
7.2.1.1 Frame Control field 33

7.2.1.2 Sequence Number field

7.2.1.2 Sequence Number field 36 35343738 39

7.2.1.3 Destination PAN Identifier field

7.2.1.3 Destination PAN Identifier field 40
7.2.1.4 Destination Address field 44
7.2.1.5 Source PAN Identifier field 4849
7.2.1.6 Source Address field 52

7.2.1.7 Auxiliary Security Header field

7.2.1.8 Frame Payload field

7.2.1.9 FCS field

Change the first paragraph of 7.2.1.9 as indicated:

The FCS field is may be either 2 or 4 octets in length and contains a 16 -bit ITU-T CRC or a 32 -bit CRC (equivalent to ANSI X3.66-1979), respectively. The FCS is calculated over the MHR and MAC payload parts of the frame. A device compliant with the MRFSK PHY shall implement the 4-octet FCS.

Change the second paragraph of 7.2.1.9 as indicated:

The $\underline{2-\text { octet }}$ FCS shall be calculated using the following standard generator polynomial of degree 16 :

Change the third paragraph of 7.2.1.9 as indicated:

The $\underline{2 \text {-octet }}$ FCS shall be calculated for transmission using the following algorithm:

Change the sixth paragraph as indicated:

The 2 -octet FCS for this case would be the following:

Replace Figure 81 as indicated:

CRC-16 Generator Polynomial: $G(x)=x^{16}+x^{12}+x^{5}+1$

1. Initialize the remainder register (r_{0} through r_{15}) to zero.
2. Shift MHR and payload into the divider in the order of transmission (LSB first).
3. After the last bit of the data field is shifted into the divider, the remainder register contains the FCS.
4. The FCS is appended to the data field so that r_{0} is transmitted first.

Figure 81-Typical 2-octet FCS implementation

Insert the following paragraphs at the end of 7.2.1.9:

The 4-octet FCS is calculated using the following standard generator polynomial of degree 32:

$$
\begin{equation*}
G_{32}(x)=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1 \tag{43}
\end{equation*}
$$

The 4-octet FCS is the one's complement of the modulo 2 sum of the two remainders in a) and b):
a) The remainder resulting from $\left[\left(\mathrm{xk}^{*}\left(\mathrm{x}^{31}+\mathrm{x}^{30}+\ldots\right)\right]\right.$ divided (modulo 2$)$ by $\mathrm{G}_{32}(\mathrm{x})$, where the value k is the number of bits in the calculation field.
b) The remainder resulting from the calculation field contents, treated as a polynomial, is multiplied by x^{32} and then divided by $G_{32}(x)$.

At the transmitter, the initial remainder of the division shall be preset to all ones and then modified via division of the calculation field by the generator polynomial $G_{32}(x)$. The one's complement of this remainder is the 4 -octet FCS field.

At the receiver, the initial remainder shall be preset to all ones. The serial incoming bits of the calculation field and FCS, when divided by $\mathrm{G}_{32}(\mathrm{x})$ in the absence of transmission errors, result in a unique non-zero remainder value. The unique remainder value is the polynomial shown in Equation (44):

$$
\begin{equation*}
x^{31}+x^{30}+x^{26}+x^{25}+x^{24}+x^{18}+x^{15}+x^{14}+x^{12}+x^{11}+x^{10}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x+1 \tag{44}
\end{equation*}
$$

7.2.2 Format of individual frame types

7.2.2.1 Beacon frame format

Replace Figure 82 with the following figure:

Octets: $\mathbf{2}$	$\mathbf{1}$	$\mathbf{4 / 1 0}$	$\mathbf{0 / 5 / 6 / 1 0 / \mathbf { 1 4 }}$	$\mathbf{2}$	variable	variable	variable	$\mathbf{2 / 4}$
Frame Control	Sequence Number	Addressing fields	Auxiliary Security Header	Superframe Specification	GTS fields (Figure 83)	Pending address fields (Figure 84)	Beacon Payload	FCS
MHR								

Figure 82-Beacon frame format
7.2.2.2 Data frame format

Replace Figure 90 with the following figure:

Octets: $\mathbf{2}$	$\mathbf{1}$	(see 7.2.2.2.1)	$\mathbf{0 / 5 / 6 / 1 0 / 1 4}$	variable	$\mathbf{2 / 4}$
Frame Control	Sequence Number	Addressing fields	Auxiliary Security Header	Data Payload	FCS
MHR	MAC Payload	MFR			

Figure 90—Data frame format

7.2.2.3 Acknowledgment frame format

Replace Figure 91 with the following figure:

Octets: $\mathbf{2}$	$\mathbf{1}$	$\mathbf{2 / 4}$
Frame Control	Sequence Number	FCS
MHR	MFR	

Figure 91—Acknowledgment frame format

7.2.2.4 MAC command frame format

Replace Figure 92 with the following figure:

Octets: $\mathbf{2}$	$\mathbf{1}$	(see 7.2.3)	$\mathbf{0 / 5 / 6 / 1 0 / 1 4}$	$\mathbf{1}$	variable	$\mathbf{2 / 4}$
Frame Control	Sequence Number	Addressing fields	Auxiliary Security Header	Command Frame Identifier	Command Payload	FCS
MHR	MAC Payload	MFR				

Figure 92—MAC command frame format

7.2.3 Frame compatibility

7.3 MAC command frames

7.4 MAC constants and PIB attributes

7.5 MAC functional description

Abstract

IEEE AMENDMENT 4:

