January, 2010 IEEE P802.15-10-0012-00-004g	1
IEEE P802 15	23
Winalaga Danganal A nag Naturanka	4
wireless Personal Area Networks	5
Project IEEE P802.15Working Group forWireless Personal Area Networks	6 7
(WPANs)	8
	9
Title Clause 5 OFDM PHY Draft	10
	11
Date Submitted January 11, 2010	12
	14
Source Tim Schmidl E-mail: schmidl@ti.com	15
\smile	16
Re Task Group 15 4g	17
	19
Abstract This document is a draft of an amendment for Clause 5, containing	20
the parts of the OEDM PHV	21
the parts of the OFDM FITT.	22
Dum and Daview	23
Pulpose Review	25
	26
Notice This document has been prepared to assist the IEEE P802.15. It is offered as a	27
basis for discussion and is not binding on the contributing individual(s) or organization(s).	20 29
The material in this document is subject to change in form and content after further study.	30
The contributor(s) reserve(s) the right to add, amend or withdraw material contained	31
herein.	32
	33
Release The contributor acknowledges and accepts that this contribution becomes the	35
property of IEEE and may be made publicly available by P802.15.	36
	37
	39
	40
	41
	42
	44
	45
	46
	47 48
	40 49
	50
	51
	52 53
Draft	54

5. General description

5.1 Introduction

Change the last paragraph of 5.1 as indicated:

In addition, <u>threetwo</u> optional PHYs are specified. A UWB PHY with optional <u>precision range finding</u>, <u>ranging is one option while</u> a <u>2450 MHz</u> CSS PHY, <u>and a scalable OFDM PHY</u> operating in the <u>2450 MHz</u> band is the second. <u>As a further addition, an optional OFDM PHY is specified</u>.

5.2 Components of the IEEE 802.15.4 WPAN

5.3 Network topologies

5.4 Architecture

- 5.4.1 Physical layer (PHY)
- Insert the following text to the end of the first dashed list in 5.4.1:
- Insert the following paragraph after the dashed list:

In addition to the unlicensed bands specified, the OFDM radio may also operate using TV white spaces.

- 5.4.1.1 Advantages of the UWB PHY for LR-WPAN
- 5.4.1.2 Advantages of the CSS (2450 MHz) PHY for LR-WPAN
- 5.4.1.3 UWB band coexistence
 - Insert the following subclause after 5.4.1.3:

5.4.1.3a Advantages of the OFDM PHY for LR-WPAN

The OFDM PHY uses a scalable FFT so that the OFDM Symbol Time and OFDM Frequency Subcarrier spacing can be maintained "constant" irrespective of the Bandwidth Option that is chosen. Bandwidth scaling from 1MHz down to less than 100KHz is achieved in this fashion by scaling the FFT options from 128 point FFT down to 8 point. Because of this, the OFDM Physical layer definition is "RF Band Agnostic". OFDM is a spectrally efficient modulation with RF robustness and performance and is adaptable to multiple regulatory considerations.

- 5.4.2 MAC sublayer
- - Insert the following text after the second paragraph:

5.5 Functional overview	12
	3
	4
5.5.1 Superframe structure	5
	0 7
	, 8
	9
5.5.2 Data transfer model	10
	11
	12
	13
5.5.2.1 Data transfer to a coordinator	14
	15
	16
	17
5.5.2.2 Data transfer from a coordinator	18
	19
	20
	21
5.5.2.3 Peer-to-peer data transfers	22
	23
Insert the following paragraph at the end of 5.5.2.3:	24
	25
5.5.3 Frame structure	26
	27
5.5.3.1 Beacon frame	20
	29

Insert the following figure (Figure 10a) after Figure 10:

Figure 10a shows the structure of the beacon frame and the OFDM PHY packet.

Figure 10a—Schematic view of the beacon frame and the OFDM PHY packet

5.5.3.2 Data frame

Insert the following figure (Figure 11a) after Figure 11:

1 2 3

4

5.5.3.4 MAC command frame

Insert the following figure (Figure 13a) after Figure 13:

		Octets:	2 1	4 to 20	0, 5, 6, 10, or 14	1	n	2 or 4
MAC ublaver			Frame Sequence Control Number	Addressing Fields	Auxiliary Security Header	Command Type	Command Payload	FCS
Oct	ets: PHY dependent	12 or 5		MHR	+ (4 to 34)	MAC	Payload	MFR
PHY	Preamble Frame	of Frame				• •		
layer	Sequence Delimit	Reserved				ad		
			(see clause	e 6) + 7 + (4 t	o 34) + <i>n</i>	au		
Figu	ure 13d—Schen	natic view c	of the MAC co	ommand f	ame and	the OF	OM PHY pa	acket
Figure 1	3a shows the strue	cture of the M	IAC command	frame and t	he OFDM	PHY pac	ket.	
5.5.4 In	nproving proba	bility of suc	cessful deliv	very				
5.5.4.1	CSMA-CA mec	hanism						
5.5.4.2	ALOHA mecha	nism for the	e UWB device	9				
5.5.4.3	Frame acknow	ledgment						
5.5.4.4	Data verificatio	'n						
5.5.4.5	Enhanced robu	istness feat	ures for the	UWB PHY				
Insert th	he following new s	subclause aft	er 5.5.4.5:					
5.5.4.5a	a Enhanced rob	oustness fea	atures for the	OFDM PI	łY			
The OF This enh	DM PHY was sp nanced robustness	ecifically des is a result of	igned to provio several PHY fe	de enhance atures:	1 robustne	ss for LR	-WPAN ap	plications
— 1 ı	The use of a cycl ander harsh multig	ic prefix and oath condition	frequency dou	main equali	zation pro	vides ver	y robust pe	erformance
— / 1	A forward error c nultipath conditio	correction (FI	EC) system pro	ovides flexi	ble and ro	bust perf	formance u	nder harsh
—] I	The use of freque ratio conditions.	ncy domain s	spreading prov	ides robust	performar	ice even i	in low sign	al-to-noise
5.5.5 P	ower consumpt	tion conside	erations					

5.5.5 Power consumption considerations