1 2		January, 2010 IEEE P802. 15-10-0011-02-004g IEEE P802.15 Wireless Personal Area Networks					
5 4 5	Project	IEEE P802.15.4G Working Group for Wireless Personal Area Networks					
5 6 7	Title	802.15.4G SUN Device Classifications					
7 8 9	Date	January21,2010					
10 11	Source	Mark Wilbur E-mail: <u>mwilbur@aclara.com</u>					
12 13 14 15 16 17 18	Contributors	Benjamin A. Rolfe/Blind Creek Associates, ben@blindcreek.com SUM Chin Sean, sum@nict.go.jp Steve Shearer/Independent, shearer_inc@yahoo.com Emmanuel Monnerie/Landis+Gyr, emmanuel.monnerie@landisgyr.com Clinton Powell/SCE, cpowell@ieee.org Robert Mason/USE/Elster, robert.t.mason@us.elster.com					
19 20 21	Re	Task Group 15.4g					
22 23 24 25	Abstract	This document is a draft of an amendment for Clause 5, 6, 7 containing the operational detail of the Device Classification Operation					
26 27	Purpose	Review					
28 29 30 31 32	 Notice This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material document is subject to change in form and content after further study. The contributor(s) rese right to add, amend or withdraw material contained herein. 						
33 34 35 36	Release	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.					
 37 38 39 40 41 42 43 44 45 46 47 48 	Draft						

49 5.XXX Smart Utility Networks Summary

- 50 A true modern Smart Grid enables multiple applications to operate over a shared,
- 51 interoperable network, similar in concept to the way the Internet works today. To put this in
- 52 perspective, the electrical network in the US alone is comprised of more than 300,000,000
- 53 metering endpoints, 14,000 transmission substations, 4,500 large substations for distribution, and
- 54 3,000 public and private owners.

55 5.XXX Device Class Components of the IEEE 802.15.4 WPAN

- 56 In order to ensure that the wireless grid communications requirements have been addressed in the
- 57 most efficient manner possible, this standard has defined three unique device classes to provide
- the capability of utilizing the most efficient methods of data transmission. The device class
- 59 boundaries have been established based on the expected volumes of data to be transmitted during
- a typical 24 hour period. Each device class utilizes unique signaling attributes in order to
- 61 maximize overall system performance.
- 62 Device Class A is defined as a class of devices forming a network capable of efficiently
- 63 supporting data throughput for an average greater than 10 Million symbols per supported node
- 64 during a single continuous 24 hour period.
- 65 Device Class B is defined as a class of devices forming a network capable of efficiently
- supporting data transfer for an average range of 10 Thousand symbols through 10 Million
- 67 Symbols per supported node during a single continuous 24 hour period.
- 68 Device Class C is defined as a class of devices forming a network capable of efficiently
- 69 supporting data transfer on an average of less than 10 Thousand symbols per supported node
- 70 during in a single continuous 24 hour period.

71 **7.XXX Common Signaling Mode (CSM)**

- A single, unique common signaling mode (CSM) is established for each regulatory domain to
- raise ensure all devices within each device class share a set of common signaling attributes. All SUN
- 74 devices will periodically listen for RTJ commands using the common signaling attributes defined
- by the CSM for the supported device class during periods of inactivity. The device will utilize
- the passive channel scan capability defined in 7.5.2.1.3, as extended for P802.15.4g to scan for
- the Request to Join (RTJ) signals. Figure Z1 provides an example that could be used to define the
- 78 maximum number of scans required to capture the RTJ command. A recommended minimum
- 79 duration and interval for RTJ scanning is defined in Table A in Annex H.

scan interval = (k) beacon period

of scans to converge

/	RTJ period				
2	scan duration				

80

0

FIGURF 2

Example

Beacon Period mS	1000	BI+BD
Beacon Duration mS	100	
Beacon Interval mS	900	
Scan Period mS	1015	SI+SD
Scan Duration mS	15	
Scan Interval mS	1000	K*BP
k	1	
Number of scans	66.67	
Max Scan Time S	676.67	SP*nS

Average scan time = Max Scan Time/2

81

82 Figure z1

- 84
- 85
- 86

87 7.XXX Request to Join (RTJ) New MAC Command

- 88 The RTJ command allows a low energy discovery mechanism to be used by a device to advertise
- to other devices that it wishes to and is capable of joining an existing PAN (beacon enabled or
- 90 non-beacon enabled). This command shall be sent by an unassociated device that wishes to
- 91 discover and associate with a PAN.
- 92 The RJT command is formatted as illustrated in figure z5

Octets (see 7.2.2.4)	1
MHR fields	Command Frame Identifier (see Table 82)

93 Figure z5

94 MHR fields

- 95 The Source Addressing Mode subfield of the Frame Control field shall be set to three (64-bit
- 96 extended addressing). The Destination Addressing Mode subfield of the Frame Control field
- 97 shall be set to two (i.e., 16-bit short addressing).
- 98 The Frame Pending subfield of the Frame Control field shall be set to zero and ignored upon
- 99 reception. The Acknowledgment Request subfield and Security Enabled subfield shall be set to100 zero.
- 101 The Destination PAN Identifier field shall contain the broadcast PAN identifier (i.e., 0xffff). The
- 102 Destination Address field shall contain the broadcast short address (i.e., 0xffff).
- 103
- 104
- 105
- 103
- 106
- 107
- 108
- 109
- 110
- 111

112 7.XXX Request to Join Response (RTJR) New MAC command

- 113 The RTRJ is issued by an associated device upon receipt of the RTJ command. The RTJR
- acknowledges the request and provides a capabilities payload to the joining device, thus
- 115 conveying information on the current communications attributes using the Channel Band
- 116 Descriptor (CBD) index detailed in 6.4.2.x.
- 117 The RJT command is formatted as illustrated in figure z6

Octets (see 7.2.2.4)	1
MHR fields	Command Frame Identifier (see Table 82)

118 Figure z6

119 MHR fields

- 120 The Source Addressing Mode subfield of the Frame Control field shall be set to three (64-bit
- 121 extended addressing). The Destination Addressing Mode subfield of the Frame Control field
- shall be set to three (i.e., 64-bit extended addressing).
- 123 The Frame Pending subfield of the Frame Control field shall be set to zero and ignored upon
- reception. The Acknowledgment Request subfield and Security Enabled subfield shall be set to zero.
- 126 The Destination PAN Identifier field shall contain the PAN identifier assigned to the responding

device if it is a PAN coordinator, or set to the broadcast PAN ID (0xffff) if the device is not a

128 PAN coordinator. The Destination Address field shall contain an extended address equal to the

- source address of the received RTJ command.
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137

138

139 7.XXX Capabilities Message (CM)

- 140 The capabilities message utilizes the Channel Band Descriptor (CBD) index detailed in 6.4.2.x to
- 141 communicate one or more supported set(s) of communications attributes. Following the
- 142 reception of an RTJ command, an associated device will transmit a Request to Join Response
- 143 (RTJR) command using a MAC data frame of Channel Band Descriptors using the CSM for each
- supported set of communications attributes starting with the CBD representing the current
- 145 network communications attributes.
- 146 The device attempting to join the network will set its communications attributes to match the
- 147 Channel Band Descriptor information contained in the payload of the received RTJR message
- that represents the current networks communications attributes. The joining device will then
- execute the association process, as defined in 7.5.3.1.
- 150 Coordination of this type is performed by an upper layer network management entity (NME).
- 151 The following text describes message structures which could be implemented by such an NME.
- 152 When two devices have exchanged capabilities information, the NME may compare PHY
- capabilities sets and determine the mutually supported modes. Other factors, such as channel
- 154 conditions, would normally be considered in selecting an optimal mode for network operation
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162

Figure 2

167 The communications attributes in Annex H Table A will be communicated using the channel page index

168 representation

169 Annex H Table A

Index	Class	Band	Domain	Mod	Rate	BT/FFT	BW	DataRate	SD	SI
1	С	220-222	US	GFSK	1.00	0.5	12.5kHz	2.4kb/s	10	200
2	A	400-430	Japan	QPSK	0.50	16	200kHz	100kb/s	10	1500
3	В	400-430	Japan	GFSK	1.00	0.5	200kHz	50kb/s	10	1500
4	А	426-467	Japan	QPSK	0.50	16	200kHz	100kb/s	10	1500
5	В	426-467	Japan	GFSK	1.00	0.5	200kHz	50kb/s	10	1500
6	С	450-470	US	GFSK	1.00	0.5	12.5Khz	2.4kb/s	10	200
7	А	470-510	China	QPSK	0.50	16	200kHz	100kb/s	10	1500
8	В	470-510	China	GFSK	1.00	0.5	200kHz	50kb/s	10	1500
9	А	863-868	Europe	QPSK	0.75	8	100kHz	50kb/s	10	500
10	В	863-870	Europe	GFSK	1.00	0.5	200kHz	50kb/s	10	1500
11	А	868-870	Europe	QPSK	0.50	16	200kHz	100kb/s	10	1500
12	С	901-902	US	GFSK	1.00	0.5	12.5Khz	2.4kb/s	10	200
13	А	902-928	US	QPSK	0.50	16	200kHz	100kb/s	10	1500
14	В	902-928	US	FSK	1.00	0.5	200kHz	50kb/s	10	1500
15	А	950-956	Japan	QPSK	0.50	16	200kHz	100kb/s	10	1500
16	В	950-956	Japan	GFSK	1.00	0.5	200kHz	50kb/s	10	1500
17	А	2400	US	QPSK	0.50	16	200kHz	100kb/s	10	1500