Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [ETRI HBC PHY Proposal for BAN]
Date Submitted: [May, 2009]
Source: [Jung-hwan Hwang, Hyung-il Park, Tae-wook Kang, Tae-young Kang, Sung-weon Kang]
Company [ETRI]
Address [138 Gajeongno, Yuseong-gu, Daejeon, 305-700, KOREA]
Voice:[+82-42-860-1176], FAX: [+82-42-860-6860], E-Mail:[jhhwang@etri.re.kr]

Abstract: [Human Body Communication Physical Layer Proposal for Body Area Networks]

Purpose: [Response to “TG6 Call for Proposals” –IEEE P802.15-08-0811-02-0006]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
HBC (Human Body Communication)
PHY Proposal for BAN

Jung-hwan Hwang, Hyung-il Park, Tae-wook Kang, Tae-young Kang, Sung-weon Kang

Electronics and Telecommunications Research Institute
(ETRI)
Outline

• Introduction

• System Principles
 – Body Channel Characteristics
 – HBC System Overview

• Performance Analysis
 – Simulation Results
 – Link Budget
 – System Verification

• Conclusions
PHY Requirements for BAN?
Why HBC for BAN?

INTRODUCTION
PHY Requirements for BAN?

• Data Rate:
 – 10 Kbps to 10 Mbps
 – The lowest mandatory rate at 3 m Range

• Distance: 1 m (typically) to 3 m

• Low Power

• Low Complexity

• Regulatory Compliance
What is the Features of HBC?

• **TAP** (Touch And Play)
 – Intuitive Service, Quick Setup, Easy Use
 – Afford Privacy & Security

• **Direct Digital Baseband Signaling**
 – Easy to Implement
 – Low Power Consumption
 – Small Size
What is the Features of HBC? – *cont.*

- Support Data Rate up to 10 Mbps
 - 10^{-6} BER Performance *without FEC*
- Low Interference Generation*
 - Low Radiation
- *Low Shadowing Effect**
Body Channel Characteristics
FSBT (Frequency Selective Baseband Transmission)
HBC System Overview

SYSTEM PRINCIPLES
Frequency Response

- The frequency response has been modeled in the frequency range of 5 Mhz ~ 50 Mhz.

Amplitude = \[\frac{|V_{output}|}{|V_{input}|} \]

Phase = \[\frac{\angle V_{output}}{\angle V_{input}} \]
How to transmit Digital Signal Directly?

• **FSBT** Background
 – Direct Digital Transmission
 • **No RF**
 – Band Selection
 • **Avoid Low Frequency**
 • $P_{\text{internal Signaling}} \gg P_{\text{external radiated}}$
 – More **Processing Gain**

FSBT: Frequency Selective Baseband Transmission
What is FSBT?

- **Baseband Signaling**
 - Characteristics of *Walsh Code*
 - Each Walsh code has the *Fundamental Freq.*
 - Use sub-group of Walsh Code in *Selected Band*
 - Get Processing Gain by Spreading

![Diagram of FSBT](image)
HBC System Overview
Simulation Parameters
BER Performance Evaluation
Link Budget

PERFORMANCE ANALYSIS
Simulation Parameters

- Baseband Transmission Square Wave
- Data Rate: Up to 10 Mbps
- Chip Rate: Max. 64 Mcps
- Spreading Code: Walsh Code
- On-Body Channel Model
BER Performance Evaluation

- On-Body Channel Model

BER performance

Average SNR [dB]

BER

10Mbps BER

2Mbps BER
PER Performance Evaluation

- On-Body Channel Model

PER (256 octets) performance
Link Budget

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Data Rate [Mbps]</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Tx Power [dBm]</td>
<td>-15.1</td>
</tr>
<tr>
<td></td>
<td>-15.1</td>
</tr>
<tr>
<td>Path Loss [dB]</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Bandwidth [dBHz]</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Rx Input Power (P_R) [dBm]</td>
<td>-70.1</td>
</tr>
<tr>
<td></td>
<td>-69.1</td>
</tr>
<tr>
<td>Rx Noise Figure (N_F) [dB]</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Noise Power (N= kTB+ N_F) [dBm]</td>
<td>-90</td>
</tr>
<tr>
<td></td>
<td>-95</td>
</tr>
<tr>
<td>SNR Required (S) [dB]</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Implementation Loss (I) [dB]</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Rx Sensitivity(R= N+S+I) [dBm]</td>
<td>-82.8</td>
</tr>
<tr>
<td></td>
<td>-90.9</td>
</tr>
<tr>
<td>Link Margin (M=P_R – R) [dB]</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>21.8</td>
</tr>
</tbody>
</table>
Test Module
HBC Modem Chip

• Configuration
 – 130nm CMOS technology
 – AFE, Modem, and Memory

• Power Consumption
 – AFE +Digital core :
 • 8.41mA @ 1.2V
 – Digital I/O :
 • 3.0mA @ 3.3V
 – Total power consumption :
 • 20mW at 10Mbps
 – Sleep mode :
 • Less than 10uW
Prototype USB Dongle

- **Controller Board**
 - MCU: AT91SAM7X256 (Atmel)
 - Interface:
 - Modem to MCU: I²C/USART
 - Host: USB
 - Board size: 70mm x 30mm

- **HBC Modem Board**
 - HBC Modem
 - 2 pin connector: electrode
 - Board size: 48mm x 25mm
CONCLUSIONS
Conclusions

• **TAP** (Touch And Play)
 – Intuitive Service/Context Aware Service
 – Quick/Simple Pairing

• **FSBT** (Frequency Selective Baseband Transmission)
 – No RF (Direct Digital Transmission)
 – Low Interference Generation
 – Simple/Small Architecture
 – Quick Development Time
Conclusions –cont.

- Data Rate
 - Scalable from 10 Kbps to 10 Mbps
 - 10^{-6} BER without FEC
- Low Power Consumption
 - Active Mode: 20 mW @ 10 Mbps
 - Sleep Mode: Less than 10 uW
Q & A