Submission Title: Texas Instruments Impulse Radio UWB Physical Layer Proposal
Date Submitted: 04 May, 2009

Source: June Chul Roh, Anuj Batra, Sudipto Chakraborty, Srinath Hosur, and Timothy Schmidl
Texas Instruments
12500 TI Blvd MS 8649, Dallas, TX, USA
E-mail: {jroh, batra, schakraborty, hosur, schmidl}@ti.com

Re: Response to IEEE 802.15.6 call for proposals

Abstract: This document describes the Texas Instruments impulse radio UWB physical layer proposal for IEEE 802.15.6.

Purpose: For discussion by IEEE 802.15 TG6

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Texas Instruments Impulse Radio UWB
Physical Layer Proposal

June Chul Roh, Anuj Batra, Sudipto Chakraborty,
Srinath Hosur, and Timothy Schmidl

Texas Instruments
May 2009
Outline

• Motivation

• Details about the impulse radio UWB PHY:
 – Frequency Band of Operation
 – Frame Format: Preamble, Header, PSDU
 – Symbol Structure
 – Burst Position Modulation with Time-Hopping
 – Time-Hopping Sequence
 – FEC: BCH Codes
 – System Parameters

• Performance Results:
 – Link Budget and Receiver Sensitivity
 – Simulation Results in AWGN and 15.3a CM1,2
 – Performance with Co-channel Interference
 – Complexity and Power Consumption

• Summary and Conclusions
Overview of Proposal

- **Goal:** Design a low-power, low-complexity UWB PHY for BAN

- **Start by re-using some aspects of IEEE 802.15.4a PHY:**
 - Preamble structure
 - Burst position modulation and time-hopping (BPM-TH)

- **Add new features that reduce complexity and lower power consumption:**
 - More efficient symbol structure – eliminate unnecessary overheads
 - A new time-hopping sequence that supports new symbol structure
 - Limit modulation scheme to BPM-TH – simplifies receiver
 - Limit systems to a single bandwidth of 512 MHz – simplifies receiver
 - Limit systems to higher frequency bands – eliminates need for complex DAA algorithms
 - Replace RS codes with low-complexity binary BCH codes
 - Add support for simultaneous operation of at least 12 piconets
Improvements over 15.4a

- New frequency band plan
 - Use only the UWB high band → does not require power-hungry DAA or LDC
 - Each band has 512 MHz bandwidth

- New symbol structure and time-hopping sequence
 - No fixed guard interval for improved PHY efficiency
 - Time-hopping sequence is designed to avoid inter-symbol interference (ISI)

- Binary burst position modulation with time-hopping (BPM-TH)
 - Binary BPM → simple non-coherent receiver in mind
 - BPSK of 802.15.4a is not supported in this proposal → want ultra-simple receivers

- Low-complexity binary FEC codes
 - BCH (31, 16, t = 3), BCH (63, 51, t = 2), BCH (63, 57, t = 1)
WW Regulations on UWB Band

- Low Band*
 - DAA or LDC is a must (except USA) after 2010
 ⇒ DAA results in huge penalty on complexity and power for BAN transceivers

- High Band*
 - DAA is not required
 ⇒ Ideal for low-complexity, low-power BAN
 - Concern: only 1.25GHz bandwidth is common worldwide
 ⇒ Solution: new proposed band plan

* Tables from P802.15-08-0034

<table>
<thead>
<tr>
<th></th>
<th>PSD</th>
<th>Frequency Bands</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EU</td>
<td>-41.3 dBm/MHz</td>
<td>3.1 - 4.8 GHz</td>
<td>LDC or DAA is needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 - 4.8 GHz</td>
<td>By Dec. 31, 2010</td>
</tr>
<tr>
<td>Japan</td>
<td>-41.3 dBm/MHz</td>
<td>3.4 – 4.8 GHz</td>
<td>DAA is needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 – 4.8 GHz</td>
<td>By Dec. 31, 2010</td>
</tr>
<tr>
<td>Korea</td>
<td>-41.3 dBm/MHz</td>
<td>3.1 - 4.8 GHz</td>
<td>LDC or DAA is needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 - 4.8 GHz</td>
<td>By Dec. 31, 2010</td>
</tr>
<tr>
<td>USA</td>
<td>-41.3 dBm/MHz</td>
<td>3.1-10.6 GHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Frequency Bands</th>
<th>PSD</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EU</td>
<td>6 - 8.5 GHz</td>
<td>-41.3 dBm/MHz</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>7.25 – 10.25 GHz</td>
<td>-41.3 dBm/MHz</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>7.2 -10.2 GHz</td>
<td>-41.3 dBm/MHz</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>3.1 -10.6 GHz</td>
<td>-41.3 dBm/MHz</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>7.25 -8.5 GHz</td>
<td>-41.3 dBm/MHz</td>
<td></td>
</tr>
</tbody>
</table>
Frequency Bands of Operation

- Channelization:

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Supported Region</th>
<th>BW (MHz)</th>
<th>Low Freq. (MHz)</th>
<th>Center Freq. (MHz)</th>
<th>High Freq. (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>US, EU</td>
<td>512</td>
<td>6400</td>
<td>6656</td>
<td>6912</td>
</tr>
<tr>
<td>2</td>
<td>US, EU</td>
<td>512</td>
<td>6912</td>
<td>7168</td>
<td>7424</td>
</tr>
<tr>
<td>3</td>
<td>US, EU, Japan, Korea</td>
<td>512</td>
<td>7424</td>
<td>7680</td>
<td>7936</td>
</tr>
<tr>
<td>4</td>
<td>US, EU, Japan, Korea</td>
<td>512</td>
<td>7936</td>
<td>8192</td>
<td>8448</td>
</tr>
<tr>
<td>5</td>
<td>US, Japan, Korea</td>
<td>512</td>
<td>8448</td>
<td>8704</td>
<td>8960</td>
</tr>
</tbody>
</table>

- All bands are located in UWB high band
- At least 3 bands available per country: 4 SOPs per band
- Center frequencies are integer multiples of 512 MHz: $512 \times [13, 14, 15, 16, 17]$
- PLL is easier to implement than PLL for 802.15.4a
PLCP Frame Format

- PPDU compromised of three components:
 - PLCP Preamble: used for packet detection, timing acquisition, carrier frequency offset estimation, etc
 - PLCP Header: convey information about to decode PSDU
 - PSDU: MAC Header + MAC Frame Body (information) + FCS

- Structure:
PLCP Preamble

- Reuse the 802.15.4a preamble signal structure

- Use the length 31 ternary codes (of 802.15.4a) with following band assignment
 - Define 4 preamble codes per band
 - Assign different preambles to adjacent bands, minimizes false alarms due to adjacent channel energy leaking into the desired band

<table>
<thead>
<tr>
<th>Code index</th>
<th>Code sequence</th>
<th>Band number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0000+0-0+++0+-000+-++++0-+0-00</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>2</td>
<td>0+0-0+000-+++0-++++-00+00++00</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>3</td>
<td>++0++000-+++00++00-0000-0+0-</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>4</td>
<td>0000++00-00-++++0+++0000+0-0++0-</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>5</td>
<td>-0+-0+++0+-00+-++++-0+0000-000</td>
<td>2, 4</td>
</tr>
<tr>
<td>6</td>
<td>++0000---+0+++000+0+-0+0000</td>
<td>2, 4</td>
</tr>
<tr>
<td>7</td>
<td>+0000+-0+00+00000+0++---0-++0+</td>
<td>2, 4</td>
</tr>
<tr>
<td>8</td>
<td>0+00-0-0+++000-+-00-0+++0++++00</td>
<td>2, 4</td>
</tr>
</tbody>
</table>
PLCP Header

- Proposed PLCP Header Structure (31 bits)

- Format the PHY header as shown in figure based on data provided by the MAC
- Calculate the 2-bit HCS value over the PHY header
 - CRC-2 polynomial: \(g(x) = 1 + x + x^2 \)
- Apply a BCH (31,16) code to PHY header + HCS

- The resulting encoded bits are modulated using the lowest data rate
Burst Position Modulation with Time-Hopping

• Basic concept:
 – Binary PPM based modulation
 – Multiple pulses are continuously transmitted in a symbol
 – Time-hopping for multiple access (symbol-rate hopping)
 – Random pulse polarity changes within a pulse burst

• Signal for \(k \)-th symbol interval may be mathematically expressed*:

\[
x^{(k)}(t) = \sum_{n=0}^{N_{cpb}-1} s_{kN_{cpb}+n} p(t - d^{(k)}T_{BPM} - h^{(k)}T_{burst} - nT_c)
\]

\[p(t)\] : transmitted pulse shape at the antenna input,
\[s_{kN_{cpb}+n} \in \{-1,1\}\] : chip scrambling code used during the \(k \)-th symbol interval,
\[d^{(k)} \in \{0,1\}\] : \(k \)-th data symbol carrying information,
\[h^{(k)} \in \{0,1,\ldots,N_{hop}-1\}\] : time-hopping position for the burst during the \(k \)-th symbol interval,
\[N_{cpb}\] : number of chips per burst,
\[T_{burst} = N_{cpb}T_c\] : slot time (or burst time),
\[T_c\] : chip time,
\[T_{BPM} = N_{hop}T_{burst}\] : BPM (burst position modulation) interval.

* For proposed symbol structure (slide 15).
802.15.4a Symbol Structure

- 802.15.4a symbol structure:

 ![Diagram](image)

 - 50% of symbol duration is reserved as guard interval (GI): 50% of symbol is *overhead*!
 - GI is unnecessarily large compared to typical channel delay spread for data rates of interest
 - Why two guard intervals in 15.4a?
 - 1st GI avoids interference from symbol ‘0’ to symbol ‘1’ region
 - 2nd GI prevents inter-symbol interference (ISI)
Elimination of 1st Guard Interval

- 1st guard interval (GI) of 15.4a is unnecessary as BPM-TH inherently provides GI
 - Since \((N_{\text{hop}}-1)T_{\text{burst}} > \tau_{\text{max}}\) for data rates of interest (\(\tau_{\text{max}}\): max expected delay spread of channel)

- ‘Fixed-length’ 2nd GI with \(T_{\text{GI}} > \tau_{\text{max}}\) can be used to prevent ISI

- Leads to a more efficient symbol structure, less overhead

- Q: Can we do better?
Proposed Optimal Symbol Structure (1)

- A: Yes, we can!

- We only need a guard interval when transmitting a ‘1’ on previous symbol at the end of the symbol, and when transmitting a ‘0’ on current symbol at the beginning of the symbol ⇒ ISI

- Example:

 ![Diagram](image1)

 - Can eliminate these cases from happening by designing the time-hopping sequence properly!

 ![Diagram](image2)
Proposed Optimal Symbol Structure (2)

- New proposed symbol structure:
 - Completely eliminate the two fixed guard intervals of 15.4a
 - Time-hopping sequence provides embedded guard interval *only when* necessary
 - ISI can happen when two consecutive hop locations are the last slot and the first slot
 - Design time-hopping to avoid the ISI condition
 - Increased channel efficiency can be used for
 - Increasing the overall possible data rates (*increase channel efficiency*), and/or
 - Providing better interference mitigation capability by increasing N_{hop}
Time-Hopping Sequence

- Time-hopping sequence design constraint to avoid ISI:

\[
h^{(k)} \geq h^{(k-1)} - (N_{hop} - N_{ch} - 1) \quad \text{for } k \geq 1
\] \hspace{1cm} (1)

- An intuitive example:
 - Let \(N_{hop} = 8 \) and \(N_{ch} = 4 \)
Time-Hopping Sequence Generation

1. Generate a random number $z(k) \in \{0,1,\ldots,N_{\text{hop}}-1\}$ by tapping $m = \log_2(N_{\text{hop}})$ shift registers of the 802.15.4a LFSR. For each symbol interval, the LFSR shall be clocked N_{cpb} times.

2. Calculate related parameters: $\alpha = h^{(k-1)} - \gamma$, $N_{\text{reduced}} = N_{\text{hop}} - \alpha$

 where $\gamma = N_{\text{hop}} - N_{\text{ch}} - 1$ is known (pre-calculated) for each data rate.

3. Generate time-hopping sequence as follows:

 $$h^{(k)} = \begin{cases} z^{(k)}, & \text{if } h^{(k-1)} \leq \gamma \\ \left[(z^{(k)} + c^{(k)}) \mod N_{\text{reduced}} \right] + \alpha, & \text{if } h^{(k-1)} > \gamma \end{cases}$$

 where $c^{(k)}$ is a 7-bit counter when $N_{\text{hop}} = 16$, or a 6-bit counter when $N_{\text{hop}} = 8$.
BCH Encoder

- BCH (31,16) code: \(g(x) = 1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{15} \)

- Low-complexity, low-power implementation:

- BCH (63, 51): \(g(x) = 1 + x^3 + x^4 + x^5 + x^8 + x^{10} + x^{12} \)

- BCH (63, 57): \(g(x) = 1 + x + x^6 \)
Process for BCH Encoding

1. Compute the number of bits in the PSDU:
 \[N_{PSDU} = (N_{MAC header} + N_{payload} + N_{FCS}) \times 8 \]

2. Calculate the number of BCH codewords:
 \[N_{CW} = \left\lceil \frac{N_{PSDU}}{k} \right\rceil \]

3. Compute the total number of shortening bits*:
 \[N_{shorten} = N_{CW} \times k - N_{PSDU} \]

4. Calculate the number of shortening bits needed per codeword:
 \[N_{spcw} = \left\lceil \frac{N_{shorten}}{N_{CW}} \right\rceil \]

5. Distribute shortening bits uniformly over codewords:
 a. Each of the first \(\text{rem}(N_{shorten}, N_{cw}) \) codewords have \(N_{spcw} + 1 \) shortened bits
 b. Remaining codewords have \(N_{spcw} \) shortened bits

6. Shortened bits are \textit{not} transmitted on-air, but receiver \textit{will} re-insert them into known locations

* Shortened bits are message bits that are set to zero
System Parameters

<table>
<thead>
<tr>
<th>MCS number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip rate (MHz)</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Chip time (ns), T_c</td>
<td>1.953125</td>
<td>1.953125</td>
<td>1.953125</td>
<td>1.953125</td>
<td>1.953125</td>
<td>1.953125</td>
<td>1.953125</td>
</tr>
<tr>
<td>Modulation</td>
<td>BPM-TH</td>
<td>BPM-TH</td>
<td>BPM-TH</td>
<td>BPM-TH</td>
<td>BPM-TH</td>
<td>BPM-TH</td>
<td>BPM-TH</td>
</tr>
<tr>
<td>BCH code rate, r</td>
<td>16/31</td>
<td>16/31</td>
<td>16/31</td>
<td>16/31</td>
<td>51/63</td>
<td>57/63</td>
<td>57/63</td>
</tr>
<tr>
<td># bursts in symbol, N_{burst}</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td># hop bursts, N_{hop}</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td># of chips in burst, N_{cpb}</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td># chips per symbol, N_{cps}</td>
<td>2048</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>192</td>
<td>80</td>
<td>48</td>
</tr>
<tr>
<td>Burst length (ns), T_{burst}</td>
<td>125.0000</td>
<td>62.5000</td>
<td>31.2500</td>
<td>15.6250</td>
<td>11.7188</td>
<td>9.7656</td>
<td>5.8594</td>
</tr>
<tr>
<td>Symbol period (ns), T_s</td>
<td>4000.00</td>
<td>2000.00</td>
<td>1000.00</td>
<td>500.00</td>
<td>375.00</td>
<td>156.25</td>
<td>93.75</td>
</tr>
<tr>
<td>Symbol rate (kps), R_s</td>
<td>250.00</td>
<td>500.00</td>
<td>1000.00</td>
<td>2000.00</td>
<td>2666.67</td>
<td>6400.00</td>
<td>10666.67</td>
</tr>
<tr>
<td>Data rate (kbps), R_b</td>
<td>129.03</td>
<td>258.06</td>
<td>516.13</td>
<td>1032.26</td>
<td>2158.73</td>
<td>5790.48</td>
<td>9650.79</td>
</tr>
<tr>
<td>Average PRF (MHz)</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>32.00</td>
<td>32.00</td>
</tr>
<tr>
<td>N_{ch} for TH sequence</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Energy-Detection Based Non-coherent Receiver

- Low complexity and low power-consumption receiver

- Other non-coherent receiver structures are also possible
Link Budget and Receiver Sensitivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rate (R_b)</td>
<td>129.03</td>
<td>1032.26</td>
<td>9650.79</td>
<td>kbps</td>
</tr>
<tr>
<td>Center frequency (f_c)</td>
<td>8704</td>
<td>8704</td>
<td>8704</td>
<td>MHz</td>
</tr>
<tr>
<td>Bandwidth (B)</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>MHz</td>
</tr>
<tr>
<td>Average Tx power</td>
<td>-16.21</td>
<td>-16.21</td>
<td>-16.21</td>
<td>dBm</td>
</tr>
<tr>
<td>Tx/Rx switch loss</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>dB</td>
</tr>
<tr>
<td>Average Tx power before Tx Ant (P_T)</td>
<td>-17.21</td>
<td>-17.21</td>
<td>-17.21</td>
<td>dBm</td>
</tr>
<tr>
<td>Tx antenna gain (G_T)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>dBi</td>
</tr>
<tr>
<td>Distance (d)</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>m</td>
</tr>
<tr>
<td>Path loss at d meter (L)</td>
<td>60.77</td>
<td>60.77</td>
<td>57.25</td>
<td>dB</td>
</tr>
<tr>
<td>Rx antenna gain (G_R)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>dBi</td>
</tr>
<tr>
<td>Rx power ($P_R = P_T + G_T + G_R - L$)</td>
<td>-77.98</td>
<td>-77.98</td>
<td>-74.46</td>
<td>dBm</td>
</tr>
<tr>
<td>Average noise power per bit ($N = -174 + 10*\log_{10}R_b$)</td>
<td>-122.89</td>
<td>-113.86</td>
<td>-104.15</td>
<td>dBm</td>
</tr>
<tr>
<td>Rx noise figure (N_F)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>dB</td>
</tr>
<tr>
<td>Total noise power per bit ($P_N = N + N_F$)</td>
<td>-112.89</td>
<td>-103.86</td>
<td>-94.15</td>
<td>dBm</td>
</tr>
<tr>
<td>Received SNR</td>
<td>34.91</td>
<td>25.88</td>
<td>19.69</td>
<td>dB</td>
</tr>
<tr>
<td>Minimum required E_b/N_0 (S)</td>
<td>17.82</td>
<td>14.49</td>
<td>13.03</td>
<td>dB</td>
</tr>
<tr>
<td>Implementation loss (I)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>dB</td>
</tr>
<tr>
<td>Link margin ($M = P_R - P_N - S - I$)</td>
<td>14.09</td>
<td>8.39</td>
<td>3.67</td>
<td>dB</td>
</tr>
<tr>
<td>Proposed min Rx sensitivity level</td>
<td>-92.07</td>
<td>-86.37</td>
<td>-78.13</td>
<td>dBm</td>
</tr>
</tbody>
</table>
Justification for IEEE 802.15.3a Channel Model (1)

- **802.15.6 CM3: Average Power Decay Profile**
 - PDP decays 30dB at $\tau = 200$ ns
 - Mean excess delay: 26.3 ns
 - RMS delay spread: 19 ns

- **802.15.6 CM4: Average Power Decay Profile**
 - PDP decays 30dB at $\tau = 180$ ns
 - Mean excess delay: 40.9 ns
 - RMS delay spread: 42 ns
Justification for IEEE 802.15.3a Channel Model (2)

- 802.15.3a CM1 (0–4m, LOS): Average PDP
 - PDP decays 30dB at $\tau = 40$ ns
 - Mean excess delay: 5.2 ns
 - RMS delay spread: 6 ns

- 802.15.3a CM2 (0–4m, NLOS): Average PDP
 - PDP decays 30dB at $\tau = 50$ ns
 - Mean excess delay: 9.6 ns
 - RMS delay spread: 8 ns
Simulation Parameters

- PSDU = 256 bytes

- Transmit pulse: root-raised cosine pulse ($f_{cutoff} = 240$ MHz and $\alpha = 0.6$)

- Channel
 - AWGN
 - Multipath channel: 802.15.3a CM1 and CM2 (0–4m, LOS, NLOS)
 - PER results in multipath channel are averaged over 95% best channels

- Receiver
 - Energy-detection based non-coherent demodulator
 - Assume perfect packet detection and header decoding
 - Ideal timing, zero carrier-frequency offset
Packet Error Performance in AWGN

- AWGN results:
Packet Error Performance in Multi-path

- CM1

- CM2
Performance in SOP Co-channel Interference (1)

- 4 SOPs in a band → 3 interfering piconets:
 - Each piconet uses a unique time-hopping sequence
 - Asynchronous between signals from multiple piconets
 - 3 interferers continuously transmitting
 - All users transmit at 1Mbps
 - Interferers d_{Inf} from reference receiver

- Path loss model:
 - Free-space path loss model ($\exp \alpha = 2$)
 - $\text{SIR} = 10 \log_{10}(d_{\text{Inf}}/d_{\text{Ref}})^\alpha$ [dB] for a single interferer

- Channel:
 - Each signal passes through an independent multipath channel (15.3a CM1)

- Receiver: non-coherent receiver based on energy-detection
Performance in SOP Co-channel Interference (2)

- SOP results:

\[\frac{d_{\text{Intf}}}{d_{\text{Ref}}} = 1.55 \] (to maintain a PER = 10%)
Power Consumption

<table>
<thead>
<tr>
<th>Data rate</th>
<th>1032.26 kbps</th>
<th>9650.79 kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Tx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power (mW)</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Idle power (mW)</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Average power (mW)</td>
<td>1.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Analog Rx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power (mW)</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Idle power (mW)</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Average power (mW)</td>
<td>1.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Tx Total (mW)</td>
<td>2.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Rx Total (mW)</td>
<td>1.9</td>
<td>2.9</td>
</tr>
</tbody>
</table>

* Power analysis is based on low-voltage, low-leakage 130 nm CMOS technology.
Comparison Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Proposed Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Regulatory</td>
<td>Compliant with TG6 regulatory document in UWB frequency band</td>
</tr>
<tr>
<td>2. Raw PHY data rate</td>
<td>129 kbps to 9.65 Mbps supported between node and hub</td>
</tr>
<tr>
<td>3. Transmission distance</td>
<td></td>
</tr>
<tr>
<td>4. Packet error rate</td>
<td>PER and link budget shown to support 10% PER for 256 octet PSDU at 3 meters within all operating frequency bands proposed.</td>
</tr>
<tr>
<td>5. Link budget</td>
<td></td>
</tr>
<tr>
<td>6. Power emission level</td>
<td>-16.21 dBm maximum EIRP</td>
</tr>
<tr>
<td>7. Interference and coexistence</td>
<td>Channelization: 5 channels total, at least 3 frequency bands available in each region</td>
</tr>
<tr>
<td></td>
<td>4 SOP supported per band, at least 12 SOP piconets supported in each region</td>
</tr>
<tr>
<td></td>
<td>Time-hopping and pulse polarization scrambling used to mitigate interference</td>
</tr>
<tr>
<td>8. Security</td>
<td>Can be combined with MAC providing security</td>
</tr>
<tr>
<td>9. Reliability</td>
<td>Link margin sufficient in 802.15.3a UWB channel model.</td>
</tr>
<tr>
<td>10. Quality of Service</td>
<td>-</td>
</tr>
<tr>
<td>11. Scalability</td>
<td>Scalable data rate from common symbol rates.</td>
</tr>
<tr>
<td>12. MAC transparency</td>
<td>-</td>
</tr>
<tr>
<td>13. Power Efficiency</td>
<td>To be added</td>
</tr>
<tr>
<td>14. Topology</td>
<td>Star topology, broadcast beacon supported. Maximum number of nodes supported via multiple access mechanisms.</td>
</tr>
<tr>
<td>15. Bonus Point</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- Reuse the strengths of 802.15.4a PHY as much as possible

- Proposed a new frequency band plan → simplifies receiver, no DAA requirements

- New symbol structure, time-hopping sequence → eliminates ISI w/o needing a GI

- Low complexity and low power-consumption standard
 - Binary burst position modulation with time-hopping (BPM-TH) → non-coherent Rx
 - Low-complexity binary BCH codes

- Wide range of data rates are supported: 129 kbps to 9.65 Mbps

- Supports for 12 simultaneously operating piconets
Acronyms and Abbreviations

- BCH Code: Bose, Ray-Chaudhuri, Hocquenghem Code
- BPM: Burst Position Modulation
- DAA: Detection And Avoidance
- FCS: Frame Check Sequence
- GI: Guard Interval
- HCS: Header Check Sequence
- ISI: Inter-Symbol Interference
- LDC: Low Duty Cycle
- LFSR: Linear Feedback Shift Register
- MAC: Media Access Control
- PDP: Power Decay Profile
- PHY: Physical Layer
- PLCP: Physical Layer Convergence Protocol
- PPDU: Physical Layer Protocol Data Unit
- PRF: Pulse Repetition Frequency
- PSDU: Physical Service Data Unit
- SOP: Simultaneously Operating Piconet
- TH: Time-Hopping
- UWB: Ultra-Wide Band
Backup
Better Channel Efficiency with Proposed Symbol Structure

- 15.4a symbol structure
- Proposed symbol structure: \(N_{hop} \) doubled
- Proposed symbol structure: data rate doubled

* For all the cases, the number of chips per burst \(N_{cpb} \) is the same.
Time-Hopping Sequence Generation (2)

- Conditional distributions from simulation: $N_{hop} = 8$ and $N_{ch} = 4$