Submission Title: [Technical Requirements for VLC Applications]
Date Submitted: [March, 2009]
Source: [Dae-Ho Kim, Tae-Gyu Kang, Sang-Kyu Lim] Company [ETRI]
Address [138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea]
Voice:[+82-42-860-5648], FAX: [+82-42-860-5611], E-Mail:[dhkim7256@etri.re.kr]
Re: []

Abstract: [This document presents about Technical Requirements for VLC Applications]

Purpose: [To contribute the Technical Requirements Document of IEEE 802.15.7 VLC]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Technical Requirements for VLC Applications

Dae-Ho Kim
dhkim7256@etri.re.kr
ETRI
Contents

• Technical Requirements
 – Topology
 – Uni/Bi-Directional
 – Data rate and Distance
 – Inherent Function of lighting source
 – Reliability

• Conclusions
Topology

- Network topology is the study of the arrangement or mapping of the elements (links, nodes, etc.) of a network, especially the physical (real) and logical (virtual) interconnections between nodes.
Physical Topology for VLC

- Six basic types of physical topology
 - Point-to-point, Bus, Star, Ring, Mesh and Tree

- Physical topology for VLC
 - Point-to-point and Star topology will be the physical topology which VLC can apply.
 - But we do not need to limit.
Logical topology for VLC

- Logical topology for VLC
 - Star, ring and mesh is possible and suitable.
 - But we also do not need to limit.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Special feature</th>
<th>VLC applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star</td>
<td></td>
<td>Master and slave</td>
<td>Infrastructure to any, mobile to fixed</td>
</tr>
<tr>
<td>Ring</td>
<td></td>
<td>Token control</td>
<td>Fixed to fixed</td>
</tr>
<tr>
<td>Mesh</td>
<td></td>
<td>Number of connection</td>
<td>Fixed to fixed, Vehicle to vehicle</td>
</tr>
</tbody>
</table>
Definition of Uni/Bi-directional

- Uni-directional: A VLC device that processes data flowing only in one physical direction (TX or RX)
- Bi-directional: A VLC device that processes data flowing in two physical directions (TX and RX)*

<table>
<thead>
<tr>
<th>Direction</th>
<th>Transmission mode</th>
<th>VLC Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni-directional</td>
<td>Simplex</td>
<td>Information Broadcast, Image sensor with LED tag, Visible remote control</td>
</tr>
<tr>
<td>Bi-directional</td>
<td>Half-duplex</td>
<td>Most of applications</td>
</tr>
<tr>
<td></td>
<td>Full-duplex</td>
<td></td>
</tr>
</tbody>
</table>
The Necessity of Uni-directional

• At TRD
 – Do we need to consider uni-directional case (no acknowledgements)? Yes
 – Information broadcast is uni-directional case and one of important applications for VLC
 • Indoor navigation, visible remote control*
 – If bi-directional communication is possible, uni-directional case can be covered by MAC or PHY layer.

* 15-09-0173-00-0007-consideration-on-vlc-application
Uni-directional within bi-directional

Information broadcasting

LED
TX Only or TX & RX

Information packet with TX only option

ACK

TX & RX

LED
TX & RX

Information packet with TX/RX option

ACK

TX & RX

TX & RX
Data Rate vs. Distance

• At application definition and summary document (15-09-0125-03-0007)
 – Data rate: min 100kbps to max 1Gbps
 – Distance: min 50cm to max 100m

• Data rate is related to light source.*
 – Phosphor LED: <10Mbps
 – Phosphorless LED: <100Mbps
 – RCLED: <500Mbps
 – LD: 1Gbps

• Real data coverage at max data rate of each lighting source

* 15-08-0468-00-0vlc-vlc-wavelength-range
Classification of Data rate

• We need to define data rate requirement according to distance and light source
 – Because we can not increase transmission power (source intensity) for increasing distance at our pleasure.
 – Because we can not use LD or RCLED at illumination for high data rate.

• Summary of Application definition and summary document (15-09-0125-03-0007)

<table>
<thead>
<tr>
<th>Application</th>
<th>Distance</th>
<th>Data Rate</th>
<th>Expected Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-to-X</td>
<td>1~10m</td>
<td>100Mbps</td>
<td>RCLED</td>
</tr>
<tr>
<td>Illumination</td>
<td>3~10m</td>
<td>10Mbps</td>
<td>Phosphor or less</td>
</tr>
<tr>
<td>V-to-X</td>
<td>100m</td>
<td>100kbps</td>
<td>Phosphor or less</td>
</tr>
</tbody>
</table>
Suggestion of Data rate classification

• Define range*
 – Very short range : < 0.5m, Short range : < 3m
 – Middle range : 3m ~ 10m, Long range : >10m

• Determine data rate depending on distance and available light source at each device

<table>
<thead>
<tr>
<th>Application</th>
<th>Distance</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-to-M, P-to-P</td>
<td>Very Short</td>
<td>?</td>
</tr>
<tr>
<td>M/P-to-F, illumination</td>
<td>Short</td>
<td>?</td>
</tr>
<tr>
<td>Illumination M-to-Infra</td>
<td>Middle</td>
<td>?</td>
</tr>
<tr>
<td>V-to-X</td>
<td>Long</td>
<td>?</td>
</tr>
</tbody>
</table>

* 15-09-0125-01-0007-vlc-applications-definitions and summary
Dae-Ho Kim, ETRI
Inherent Function of lighting source

• The inherent function and quality of the equipment should be maintained although VLC technology is applied.
 – Brightness of illumination
 – Dimming control of illumination
 – Color of illumination
 – Brightness control of Stop lamp of vehicle
 – Brightness of Head lamp of vehicle
Reliability of VLC

- **Reliability**: Link packet loss rate*
 - 802.15.4: less than 1%
 - 802.15.3: less than 8%
 - 802.15.5: consider related standard
 - Critical factor to some application
 - Emergency, Blind navigation, L-commerce**

* 15-04-0655-00-0005-tg5-technical-requirements
** 15-09-0117-01-0007-vlc-potential-use-cases-and-technical-requirement
Conclusions (1/2)

• Topology
 – Point-to-point and star for physical topology
 – Ring, star and mesh for logical topology
 – VLC can support all types of physical and logical topologies.

• Directionality
 – Bi-directional and Uni-directional (optional)

• Transmission mode
 – Half-duplex mode or Full-duplex mode
Conclusions (2/2)

- **Data rate**
 - VLC need to classify of data rate related to the transmission distance and lighting device

- **Inherency**
 - VLC should maintain the inherency of lighting source during communication.
 - Add to TRD

- **Reliability**
 - Add to TRD